Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Elesclomol is an anticancer drug that is currently undergoing clinical trials. Elesclomol forms a strong 1:1 complex with Cu(II) and may exert its anticancer activity through the induction of oxidative stress and/or its ability to transport copper into the cell. A UV-vis spectrophotometric titration showed that Cu(I) also formed a 1:1 complex with elesclomol. Ascorbic acid, but not glutathione or NADH, potently reduced the Cu(II)-elesclomol complex to produce hydrogen peroxide. Even though hydrogen peroxide mediated reoxidation of the copper(I) produced by ascorbic acid reduction has the potential to lead to hydroxyl radical formation, electron paramagnetic resonance spin trapping experiments, either with or without added hydrogen peroxide, showed that the ascorbic acid-reduced Cu(II)-elesclomol complex could not directly generate damaging hydroxyl radicals. Both Cu(II)-elesclomol and elesclomol potently oxidized dichlorofluorescin in K562 cells. The highly specific copper chelators tetrathiomolybdate and triethylenetetramine were found to greatly reduce the cytotoxicity of both elesclomol and Cu(II)-elesclomol complex towards erythroleukemic K562 cells, consistent with a role for copper in the cytotoxicity of elesclomol. The superoxide dismutating activity of Cu(II)-elesclomol was much lower than that of Cu(II). Depletion of glutathione levels in K562 cells by treatment with buthionine sulfoximine sensitized cells to both elesclomol and Cu(II)-elesclomol. In conclusion, these results showed that elesclomol indirectly inhibited cancer cell growth through Cu(II)-mediated oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2014.04.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!