Commercial swine waste lagoons are regarded as a major reservoir of natural estrogens, which have the potential to produce adverse physiological effects on exposed aquatic organisms and wildlife. However, there remains limited understanding of the complex mechanisms of physical, chemical, and biological processes that govern the fate and transport of natural estrogens within an anaerobic swine lagoon. To improve lagoon management and ultimately help control the offsite transport of these compounds from swine operations, a probabilistic Bayesian network model was developed to assess natural estrogen fate and budget and then compared against data collected from a commercial swine field site. In general, the model was able to describe the estrogen fate and budget in both the slurry and sludge stores within the swine lagoon. Sensitivity analysis within the model demonstrated that the estrogen input loading from the associated barn facility was the most important factor in controlling estrogen concentrations within the lagoon slurry storage, whereas the settling rate was the most significant factor in the lagoon sludge storage. The degradation reactions were shown to be minor in both stores based on prediction of average total estrogen concentrations. Management scenario evaluations demonstrated that the best possible management options to reduce estrogen levels in the lagoon are either to adjust the estrogen input loading from swine barn facilities or to effectively enhance estrogen bonding with suspended solids through the use of organic polymers or inorganic coagulants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5443406PMC
http://dx.doi.org/10.1002/ieam.1538DOI Listing

Publication Analysis

Top Keywords

estrogen fate
12
estrogen
9
bayesian network
8
network model
8
natural estrogen
8
fate transport
8
swine waste
8
commercial swine
8
natural estrogens
8
swine lagoon
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!