Avian influenza viruses (AIV) are of great concern to the worldwide community as well as the poultry industry. Although existing vaccines are successful in limiting the spread of the virus, these vaccines do not eliminate virus shedding into the environment. As a result, it is of great importance to enhance the efficacy of existing AIV vaccines. Therefore, the objective of the present study was to utilize the immunostimulatory Toll-like receptor ligands poly I:C, lipopolysaccharide (LPS), and CpG DNA motifs, either alone or in combination with each other, as adjuvants to enhance the immunogenicity of an inactivated AIV vaccine. Chickens were vaccinated twice, 14 days apart. Antibody-mediated responses were assessed by collected sera and lacrimal secretions, while cell-mediated immunity was assessed by stimulating splenocytes from vaccinated chickens in vitro with the vaccine antigen. The results suggest that CpG alone served as the best single-ligand adjuvant compared to poly I:C or LPS, as it significantly enhanced antibody-mediated responses, as determined by enzyme-linked immunosorbant assay. Furthermore, upon combining CpG with poly I:C, a robust antibody-mediated and cell-mediated immune response was elicited, resulting in an enhanced hemagglutination inhibition titer and splenocyte proliferation respectively. Future studies may be aimed at assessing the efficacy of the poly I:C and CpG combination adjuvant in protecting against AIV infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/vim.2013.0124 | DOI Listing |
Virol Sin
December 2024
Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou 510642, China. Electronic address:
A switch from avian-type α-2,3 to human-type α-2,6 receptors is an essential element for the initiation of a pandemic from an avian influenza virus. Some H9N2 viruses exhibit a preference for binding to human-type α-2,6 receptors. This identifies their potential threat to public health.
View Article and Find Full Text PDFThe current situation with H5N1 highly pathogenic avian influenza virus (HPAI) is causing a worldwide concern due to multiple outbreaks in wild birds, poultry, and mammals. Moreover, multiple zoonotic infections in humans have been reported. Importantly, HPAI H5N1 viruses with genetic markers of adaptation to mammals have been detected.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland.
Highly pathogenic avian influenza (HPAI) H5N1 is known for its virulence and zoonotic potential, infecting birds and mammals, thus raising public health concerns. Since 2021 its spread among birds has led to cross-species transmission causing epizootics among mammals, eventually impacting fur animal farms in Finland in 2023. To analyze the infectivity of the Finnish H5N1 isolates in human cells, representatives of diverse H5N1 isolates were selected based on the genetic differences, host animal species, and the year of occurrence.
View Article and Find Full Text PDFFront Microbiol
December 2024
Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
To prevent H9N2 avian influenza virus (AIV) and Avian metapneumonovirus/C (aMPV/C) infections, we constructed recombinant aMPV/C viruses expressing the HA protein of H9N2 AIV. In addition, EGFP was inserted into the intermediate non-coding region of P-M protein in the aMPV/C genome using a reverse genetic system. The conditions for rescuing the recombinant virus were enhanced followed by insertion of the H9N2 AIV HA gene into the same location in the aMPV/C.
View Article and Find Full Text PDFPoult Sci
December 2024
Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. Electronic address:
Avian Influenza Virus (AIV) has been prevalent worldwide in recent years, resulting in substantial economic losses in the poultry industry. More importantly, AIV is capable of cross-species transmission among mammals, posing a dormant yet considerable threat to human health and safety. In this study, two rapid detection methods for AIV based on the CRISPR-Cas13a were developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!