Central leptin (Lep) signaling is important in control of appetite and energy balance in mammals, but information on Lep signaling and physiological roles in early vertebrates is still lacking. To elucidate fish Lep signaling activation and modulation, a long-form Lep receptor (LepRL) and a truncated LepR (LepRT) are functionally characterized from rainbow trout. The receptors generated in alternatively splicing events have identical extracellular and transmembrane domains but differ in the intracellular sequence, both in length and identity. Gene transfection experiments show that LepRL is expressed as a 125-kDa protein in rainbow trout hepatoma cell line RTH-149, whereas LepRT is 100 kDa; both receptors specifically bind Lep. Homogenous Lep induces tyrosine phosphorylation of Janus kinase 2 and signal transducer and activation of transcription 3 in LepRL-expressing RTH-149 cells. This response is diminished in cells coexpressing LepRL and LepRT, suggesting that the LepRT which lacks these kinase-associated motifs competes with the LepRL for Lep availability, thus attenuating the Lep signal. Both receptor genes are highly expressed in the central nervous system. The mRNA levels of LepRT in hypothalamus, but not LepRL, change postprandially, with decreased transcription at 2 hours postfeeding and then elevated at 8 hours, concomitant with changes in proopiomelanocortin-A1 transcription. However, both receptors have no change in mRNA levels during 3 weeks of fasting. These data indicate that LepRT transcription is more likely a mechanism for modulating Lep effects on short-term feed intake than in regulating energy balance in the long term. In vitro and physiological characterization of LepR isoforms indicates divergent Lep signaling modulation patterns among vertebrates with different life histories and metabolic profiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2013-2131 | DOI Listing |
Sci Rep
January 2025
Department of Gynaecology and Obstetrics, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China.
Preeclampsia (PE) is a common hypertensive disease in women with pregnancy. With the development of bioinformatics, WGCNA was used to explore specific biomarkers to provide therapy targets efficiently. All samples were obtained from gene expression omnibus (GEO), then we used a package named "WGCNA" to construct a scale-free co-expression network and modules related to PE.
View Article and Find Full Text PDFFront Clin Diabetes Healthc
December 2024
Mother Infant Research Institute at Tufts Medical Center, Boston, MA, United States.
Introduction: Infants of diabetic mothers (IDMs) may exhibit decreased oral intake, requiring nasogastric feedings and prolonged hospitalization. The objective of this study was to explore whether saliva serves as an informative biofluid for detecting expression of hunger signaling and energy homeostasis modulator genes and to perform exploratory analyses examining expression profiles, body composition, and feeding outcomes in late preterm and term IDMs and infants born to mothers with normoglycemia during pregnancy.
Methods: In this prospective cohort pilot study, infants born at ≥ 35 weeks' gestation to mothers with gestational or type II diabetes (IDM cohort) and normoglycemic mothers (control cohort) were recruited.
BMC Mol Cell Biol
December 2024
Macau University of Science and Technology, Faculty of Chinese Medicine, E205, Avenida Wai Long, Taipa, Macau, 999078, China.
Background: Cellular senescence is a key driver of decreased bone formation and osteoporosis. Leptin (LEP) has been implicated in cellular senescence and osteogenic differentiation. The aim of this study was to investigate the mechanisms by which LEP mediates cellular senescence and osteogenic differentiation.
View Article and Find Full Text PDFBMC Genomics
December 2024
College of Agriculture and Veterinary Sciences (FCAV), Department of Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Jaboticabal, SP, 14884-900, Brazil.
Background: Castration is a common practice in beef cattle production systems to manage breeding and enhance meat quality by promoting intramuscular fat (IMF) deposition, known as marbling. However, the molecular mechanisms that are influenced by castration in beef cattle are poorly understood. The aim of this study was to identify differentially expressed genes (DEGs) and metabolic pathways that regulate IMF deposition in crossbred cattle by RNA sequencing (RNA-Seq) of skeletal muscle tissue.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China. Electronic address:
Background: While metformin has shown promise in treating septic myocardial injury (SMI), its underlying mechanisms and impact on metabolic disturbances remain poorly understood.
Methods: This study employed an integrated approach of metabolomics and network pharmacology to identify key targets and pathways through which metformin may act against SMI. Findings were validated using a lipopolysaccharide (LPS)-induced mouse model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!