Six antimicrobial-producing seaweed-derived Bacillus strains were evaluated in vitro as animal probiotics, in comparison to two Bacillus from an EU-authorized animal probiotic product. Antimicrobial activity was demonstrated on solid media against porcine Salmonella and E. coli. The marine isolates were most active against the latter, had better activity than the commercial probiotics and Bacillus pumilus WIT 588 also reduced E. coli counts in broth. All of the marine Bacillus tolerated physiological concentrations of bile, with some as tolerant as one of the probiotics. Spore counts for all isolates remained almost constant during incubation in simulated gastric and ileum juices. All of the marine Bacillus grew anaerobically and the spores of all except one isolate germinated under anaerobic conditions. All were sensitive to a panel of antibiotics and none harbored Bacillus enterotoxin genes but all, except B. pumilus WIT 588, showed some degree of β-hemolysis. However, trypan blue dye exclusion and xCELLigence assays demonstrated a lack of toxicity in comparison to two pathogens; in fact, the commercial probiotics appeared more cytotoxic than the majority of the marine Bacillus. Overall, some of the marine-derived Bacillus, in particular B. pumilus WIT 588, demonstrate potential for use as livestock probiotics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052298PMC
http://dx.doi.org/10.3390/md12052422DOI Listing

Publication Analysis

Top Keywords

marine bacillus
16
pumilus wit
12
wit 588
12
bacillus
9
livestock probiotics
8
commercial probiotics
8
bacillus pumilus
8
probiotics
6
marine
5
vitro assessment
4

Similar Publications

Changes of shrimp myofibrillar proteins hydrolyzed by Virgibacillus proteases: Structural characterization, mechanism visualization, and flavor compound formation.

Food Res Int

January 2025

State Key Laboratory of Food Science and Resources, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 31200, China; National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing 646000, Zhejiang, China. Electronic address:

To explore the mechanism of Virgibacillus proteases on hydrolysis of shrimp myofibrillar protein (SMP) and formation of volatile compounds, the fermented broth of Virgibacillus halodenitrificans was purified and the protease was identified as peptidase S8. The enzyme had optimum activity at pH 7.0-8.

View Article and Find Full Text PDF

Highlighting antibiotic-free aquaculture by using marine microbes as a sustainable method to suppress Vibrio and enhance the performance of brine shrimp (Artemia franciscana).

Arch Microbiol

January 2025

Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, 5 Yushan Road, 266003, Qingdao, P. R. China.

Brine shrimp nauplii are widely used as live food in fish and shellfish aquaculture but they may transmit pathogenic Vibrio to the target species causing significant economic loss. Heavy usage of antibiotics is expensive and environmentally damaging. Use of natural microbes as probiotics for disease management is a more sustainable strategy.

View Article and Find Full Text PDF

Epibiotic bacterial community composition varies during different developmental stages of Octopus mimus: Study of cultivable representatives and their secondary metabolite production.

PLoS One

January 2025

Laboratorio de Ecología Molecular y Microbiología Aplicada, Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Antofagasta, Chile.

Marine microbial communities colonizing the skin of invertebrates constitute the primary barrier between host and environment, potentially exerting beneficial, neutral, or detrimental effects on host fitness. To evaluate the potential contribution of epibiotic bacteria to the survival of early developmental stages of Octopus mimus, bacterial isolates were obtained from eggs, paralarvae, and adults. Their enzymatic activities were determined, and antibacterial properties were assessed against common marine pathogens.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how well a gut bacteria strain, Bacillus cereus AP-01, can break down low-density polyethylene (LDPE), using experiments over 28 days to measure its effectiveness.
  • The researchers employed various methods like FTIR and SEM to analyze changes in LDPE structure and confirmed the bacterial strain through molecular characterization.
  • Results showed that the bacteria significantly degraded LDPE, with a 30.3% weight loss and changes in mechanical properties, highlighting its potential as a solution for plastic pollution.
View Article and Find Full Text PDF

Plant growth-promoting microorganisms can enhance sulfur uptake and boost crop production. This study was conducted to evaluate the changes in physiology, metabolism, and yield of chickpeas following the application of sulfur and two microbial consortia: (1) Thiobacillus sp., Bacillus subtilis, Paraburkholderia fungorum, and Paenibacillus sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!