Effect of increasing levels of seven tree species extracts added to a high concentrate diet on in vitro rumen gas output.

Anim Sci J

Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Estado de México, Mexico; Faculty of Agriculture, Alexandria University, Alexandria, Egypt.

Published: September 2014

This study was conducted to investigate the effects of increasing levels of extracts of Byrsonima crassifolia, Celtis pallida, Enterolobium cyclocarpum, Fraxinus excelsior, Ficus trigonata, Phoradendrom brevifolium and Prunus domestica on in vitro gas production (GP) and ruminal fermentation of a high concentrate diet. Plant extracts were prepared at 1 g dry matter (DM)/8 mL of solvent mixture (methanol : ethanol : water, 1:1:8) and added at levels of 0, 0.6, 1.2 and 1.8 mL/g DM of a high concentrate diet. In vitro GP was recorded at 2, 4, 6, 8, 10, 12, 24, 48 and 72 h of incubation. Increasing addition of extracts linearly increased (P < 0.001), the GP24 , GP48 and GP72 (mL/g DM), and linearly decreased (P < 0.001), the discrete GP lag time. Moreover, increasing extract doses linearly increased (P < 0.001) the asymptotic GP and decreased (P < 0.001) the rate of GP. GP6 was not impacted by treatments and GP12 increased linearly (P = 0.01) with increasing addition of extracts. Rumen pH declined linearly (P < 0.05) with increasing doses of extracts added. As no interactions (P > 0.05) occurred between the extracts and doses, it could be conclude that all extracts positively modified rumen fermentation at doses of 1.2 to 1.8 mL extract/g diet DM.

Download full-text PDF

Source
http://dx.doi.org/10.1111/asj.12218DOI Listing

Publication Analysis

Top Keywords

high concentrate
12
concentrate diet
12
increasing levels
8
levels tree
4
tree species
4
extracts
4
species extracts
4
extracts high
4
diet vitro
4
vitro rumen
4

Similar Publications

Mosses and lichens are often used to assess atmospheric deposition of Pb. The most widely used method for determining this isotope is gamma spectrometric analysis. There is often a need to enhance the sensitivity of the method, which can be achieved by pre-concentrating Pb.

View Article and Find Full Text PDF

High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.

View Article and Find Full Text PDF

Limited treatment options are available for bladder cancer (BCa) resulting in extremely high mortality rates. Cyclovirobuxine D (CVB-D), a naturally alkaloid, reportedly exhibits notable antitumor activity against diverse tumor types. However, its impact on CVB-D on BCa and its precise molecular targets remain unexplored.

View Article and Find Full Text PDF

Ion Networks in Water-based Li-ion Battery Electrolytes.

Acc Chem Res

January 2025

Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.

ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.

View Article and Find Full Text PDF

Cascade-Responsive Nanoparticles for Efficient CRISPR/Cas9-Based Glioblastoma Gene Therapy.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.

CRISPR/Cas9 (CRISPR, clustered regularly interspaced short palindromic repeats) gene editing technology represents great promise for treating glioblastoma (GBM) due to its potential to permanently eliminate tumor pathogenic genes. Unfortunately, delivering CRISPR to the GBM in a safe and effective manner is challenging. Herein, a glycosylated and cascade-responsive nanoparticle (GCNP) that can effectively cross the blood-brain barrier (BBB) and activate CRISPR/Cas9-based gene editing only in the GBM is designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!