A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Archaeometric classification of ancient human fossil bones, with particular attention to their carbonate content, using chemometrics, thermogravimetry and ICP emission. | LitMetric

Background: The potential of coupling chemometric data processing techniques to thermal analysis for formulating an "archaeometric" classification of fossil bones was investigated. Moreover, the possibility of integrating the outcomes of this approach with the results of inductively coupled plasma (ICP) emission spectroscopy for an anthropological interpretation of the observed patterns was also examined.

Results: Several fossil bone samples coming from the necropolis of El Geili, in the middle Nile, an important archaeological site, were first of all subjected to thermogravimetric (TG) and derivative thermogravimetric (DTG) analysis and the main steps of the curves were analyzed. This allowed fossil bone samples to be differentiated, both by means of classical bidimensional and chemometric representations, namely Principal Component Analysis (PCA). In particular, two clusters were observed, attributable to samples of different antiquity. In addition, inductively coupled plasma (ICP) emission spectroscopy showed that the samples in the cluster corresponding to more recent burials are characterized by a higher Zn content, suggesting a more varied diet.

Conclusions: The experimental data obtained using thermogravimetry (TG-DTG) allows us to differentiate all the fossil bone samples analyzed into two separate clusters and to interpret this differentiation in terms of the observed transitions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4008433PMC
http://dx.doi.org/10.1186/1752-153X-8-26DOI Listing

Publication Analysis

Top Keywords

icp emission
12
fossil bone
12
bone samples
12
fossil bones
8
inductively coupled
8
coupled plasma
8
plasma icp
8
emission spectroscopy
8
fossil
5
samples
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!