There is a striking color polymorphism for wolves in the Yellowstone National Park where approximately half the wolves are black. The genetic basis for this polymorphism is known, and fitnesses of the genotypes are estimated. These estimates suggest that there is strong heterozygote advantage but substantial asymmetry in the fitness differences of the 2 homozygotes. Theoretically, such fitnesses in a finite population are thought to reduce genetic variation at least as fast as if there were no selection at all. Because the color polymorphism has remained at about the same frequency for 17 years, about 4 generations, we investigated whether this was consistent with the theoretical predictions. Counter to this general expectation of loss, given the initial frequency of black wolves, the theoretical expectation in this case was found to be that the frequency would only decline slowly over time. For example, if the effective population size is 20, then the expected black allele frequency after 4 generations would be 0.191, somewhat less than the observed value of 0.237. However, nearly 30% of the time the expected frequency is 0.25 or greater, consistent with the contemporary observed frequency. In other words and in contrast to general theoretical predictions, because of the short period of time in evolutionary terms and the relatively weak selection at low frequencies, the observed variation and the predicted theoretical variation are not inconsistent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jhered/esu024 | DOI Listing |
Am J Hum Genet
January 2025
Medical Genetics and Genomics Laboratories, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA; Departments of Pathology, and Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. Electronic address:
Analysis of exome data from the latest release of the Genome Aggregation Database (gnomAD v.4.1.
View Article and Find Full Text PDFBioinformatics
November 2024
School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China.
Motivation: Haplotype-resolved genome assemblies serve as vital resources in various research domains, including genomics, medicine, and pangenomics. Algorithms employing Hi-C data to generate haplotype-resolved assemblies are particularly advantageous due to its ready availability. Existing methods primarily depend on mapping quality to filter out uninformative Hi-C alignments which may be susceptible to sequencing errors.
View Article and Find Full Text PDFElife
November 2024
Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
The majority of highly polymorphic genes are related to immune functions and with over 100 alleles within a population, genes of the major histocompatibility complex (MHC) are the most polymorphic loci in vertebrates. How such extraordinary polymorphism arose and is maintained is controversial. One possibility is heterozygote advantage (HA), which can in principle maintain any number of alleles, but biologically explicit models based on this mechanism have so far failed to reliably predict the coexistence of significantly more than ten alleles.
View Article and Find Full Text PDFFASEB J
October 2024
Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA.
Pathogenic variants in the type I ryanodine receptor (RYR1) result in a wide range of muscle disorders referred to as RYR1-related myopathies (RYR1-RM). We developed the first RYR1-RM mouse model resulting from co-inheritance of two different RYR1 missense alleles (Ryr1 mice). Ryr1 mice exhibit a severe, early onset myopathy characterized by decreased body/muscle mass, muscle weakness, hypotrophy, reduced RYR1 expression, and unexpectedly, incomplete postnatal lethality with a plateau survival of ~50% at 12 weeks of age.
View Article and Find Full Text PDFMed Sci (Basel)
August 2024
Immunology and Transplant Immunology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania.
This research aims to determine whether HLA heterozygosity confers a protective effect against hepatitis B virus infection by analyzing the relationship between HLA diversity and the risk of hepatitis B virus (HBV) infection. A total of 327 hepatitis B patients were selected and categorized based on their clinical status: 284 patients with chronic HBV infection and 43 patients with HBV-related liver cirrhosis (LC). The control group included 304 healthy individuals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!