Marine microbes use alginate lyases to degrade and catabolize alginate, a major cell wall matrix polysaccharide of brown seaweeds. Microbes frequently contain multiple, apparently redundant alginate lyases, raising the question of whether these enzymes have complementary functions. We report here on the molecular cloning and functional characterization of three exo-type oligoalginate lyases (OalA, OalB, and OalC) from Vibrio splendidus 12B01 (12B01), a marine bacterioplankton species. OalA was most active at 16°C, had a pH optimum of 6.5, and displayed activities toward poly-β-d-mannuronate [poly(M)] and poly-α-l-guluronate [poly(G)], indicating that it is a bifunctional enzyme. OalB and OalC were most active at 30 and 35°C, had pH optima of 7.0 and 7.5, and degraded poly(M·G) and poly(M), respectively. Detailed kinetic analyses of oligoalginate lyases with poly(G), poly(M), and poly(M·G) and sodium alginate as substrates demonstrated that OalA and OalC preferred poly(M), whereas OalB preferred poly(M·G). The catalytic efficiency (kcat/Km) of OalA against poly(M) increased with decreasing size of the substrate. OalA showed kcat/Km from 2,130 mg(-1) ml s(-1) for the trisaccharide to 224 mg(-1) ml s(-1) for larger oligomers of ∼50 residues, and 50.5 mg(-1) ml s(-1) for high-molecular-weight alginate. Although OalA was most active on the trisaccharide, OalB and OalC preferred dimers. Taken together, our results indicate that these three Oals have complementary substrate scopes and temperature and pH adaptations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068682 | PMC |
http://dx.doi.org/10.1128/AEM.01285-14 | DOI Listing |
Appl Biochem Biotechnol
August 2024
College of Food Science and Technology and International Institute of Food Innovation and State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, People's Republic of China.
Alginate lyase is an enzyme that catalyses the hydrolysis of alginate into alginate oligoalginates. To enhance enzyme stability and recovery, a facile strategy for alginate lyase immobilization was developed. Novel magnetic chitosan microspheres were synthesized and used as carriers to immobilize alginate lyase.
View Article and Find Full Text PDFCurr Microbiol
October 2023
Marine College, Shandong University, Weihai, 264209, Shandong, China.
A novel bacterium, designated E313, was isolated from brown algae Saccharina japonica in Weihai, China. The strain is a Gram-stain-negative, non-flagellated, non-gliding, aerobic, rod-shaped bacterium that grows optimally at 28 °C with pH levels between 7.0 and 7.
View Article and Find Full Text PDFGlycobiology
November 2021
Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France.
Alginate is a major compound of brown macroalgae and as such an important carbon and energy source for heterotrophic marine bacteria. Despite the rather simple composition of alginate only comprising mannuronate and guluronate units, these bacteria feature complex alginolytic systems that can contain up to seven alginate lyases. This reflects the necessity of large enzyme systems for the complete degradation of the abundant substrate.
View Article and Find Full Text PDFAppl Environ Microbiol
February 2021
Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
Enzymatic depolymerization of seaweed polysaccharides is gaining interest for the production of functional oligosaccharides and fermentable sugars. Herein, we describe a thermostable alginate lyase that belongs to polysaccharide lyase family 17 (PL17) and was derived from an Arctic Mid-Ocean Ridge (AMOR) metagenomics data set. This enzyme, AMOR_PL17A, is a thermostable exolytic oligoalginate lyase (EC 4.
View Article and Find Full Text PDFMar Drugs
October 2020
CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
Polysaccharides extracted from marine algae have attracted much attention due to their biotechnological applications, including therapeutics, cosmetics, and mainly in agriculture and horticulture as biostimulants, biofertilizers, and stimulators of the natural defenses of plants. This study aimed to evaluate the ability of alginate isolated from from the Moroccan coast and oligoalginates derivatives to stimulate the natural defenses of tomato seedlings. Elicitation was carried out by the internodal injection of bioelicitor solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!