Single-chain variable fragment (scFv) antibodies are widely used as diagnostic and therapeutic agents or biosensors for a majority of human disease. However, the limitations of the present scFv antibody in terms of stability, solubility, and affinity are challenging to produce by traditional antibody screening and expression formats. We describe here a feasible strategy for creating the green fluorescent protein (GFP)-based antibody. Complementarity-determining region 3 (CDR3), which retains the antigen binding activity, was introduced into the structural loops of superfolder GFP, and the result showed that CDR3-inserted GFP displayed almost the same fluorescence intensity as wild-type GFP, and the purified proteins of CDR3 insertion showed the similar binding activity to antigen as the corresponding scFv. Among of all of the CDRs, CDR3s are responsible for antigen recognition, and only the CDR3a insertion is the best format for producing GFP-based antibody binding to specific antigen. The wide versatility of this system was further verified by introducing CDR3 from other scFvs into loop 9 of GFP. We developed a feasible method for rapidly and effectively producing a high-affinity GFP-based antibody by inserting CDR3s into GFP loops. Further, the affinity can be enhanced by specific amino acids scanning and site-directed mutagenesis. Notably, this method had better versatility for creating antibodies to various antigens using GFP as the scaffold, suggesting that a GFP-based antibody with high affinity and specificity may be useful for disease diagnosis and therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068687 | PMC |
http://dx.doi.org/10.1128/AEM.00936-14 | DOI Listing |
Nat Commun
September 2024
Department of Genetics, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY, 10461, USA.
Near-infrared (NIR) probes are highly sought after as fluorescent tags for multicolor cellular and in vivo imaging. Here we develop small NIR fluorescent nanobodies, termed NIR-Fb and NIR-Fb, enabling background-free visualization of various GFP-derived probes and biosensors. We also design a red-shifted variant, NIR-Fb, to simultaneously target several antigens within the NIR spectral range.
View Article and Find Full Text PDFVaccine
June 2022
Infectious Disease and Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033 USA.
Epstein-Barr Virus (EBV) is the causative agent of infectious mononucleosis and has been associated with a variety of malignancies. In vivo, EBV infects B cells and epithelial cells. However, the current EBV neutralization assays, especially those against B cell infection, are low throughput, laborious and lack of sensitivity.
View Article and Find Full Text PDFMediterr J Hematol Infect Dis
March 2020
AstraZeneca, South San Francisco, CA 94080, USA.
No licensed vaccine is available for prevention of EBV-associated diseases, and robust, high-throughput bioanalytical assays are needed to evaluate immunogenicity of gp350 subunit-based candidate EBV vaccines. Here we have developed an improved EBV-GFP based neutralization assay for such a vaccine's pre-clinical and clinical validation to measure EBV specific neutralizing antibodies in human donors. The supplementation of guinea pig complement of our previously published high-throughput EBV-GFP fluorescent focus (FFA)-based neutralization assay allowed the detection of complement-dependent neutralizing antibodies using a panel of heat-inactivated healthy human sera.
View Article and Find Full Text PDFVaccines (Basel)
July 2019
Université de La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 97491 Sainte-Clotilde, La Réunion, France.
Zika virus (ZIKV) is an emerging arthropod-borne virus of major public health concern. ZIKV infection is responsible for congenital Zika disease and other neurological defects. Antibody-mediated virus neutralization is an essential component of protective antiviral immunity against ZIKV.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
September 2019
uniQure N.V., Amsterdam, the Netherlands.
Currently, individuals with pre-existing neutralizing antibodies (NABs) against adeno-associated virus (AAV) above titer of 5 are excluded from systemic AAV-based clinical trials. In this study we explored the impact of pre-existing anti-AAV5 NABs on the efficacy of AAV5-based gene therapy. AMT-060 (AAV5-human FIX) was evaluated in 10 adults with hemophilia B who tested negative for pre-existing anti-AAV5 NABs using a GFP-based assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!