The aim of this study was to present a systematic sequence for three-dimensional (3D) measurement and cephalometry, provide the norm data for computed tomography-based 3D architectural and structural cephalometric analysis, and validate the 3D data through comparison with Delaire's two-dimensional (2D) lateral cephalometric data for the same Korean adults. 2D and 3D cephalometric analyses were performed for 27 healthy subjects and the measurements of both analyses were then individually and comparatively analyzed. Essential diagnostic tools for 3D cephalometry with modified definitions of the points, planes, and measurements were set up based on a review of the conceptual differences between two and three dimensions. Some 2D and 3D analysis results were similar, though significant differences were found with regard to craniofacial angle (C1-F1), incisal axis angles, cranial base length (C2), and cranial height (C3). The discrepancy in C2 and C3 appeared to be directly related to the magnification of 2D cephalometric images. Considering measurement discrepancies between 2D and 3D Delaire's analyses due to differences in concept and design, 3D architectural and structural analysis needs to be conducted based on norms and a sound 3D basis for the sake of its accurate application and widespread adoption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijom.2014.03.012 | DOI Listing |
J Hazard Mater
January 2025
School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address:
Activated sludge enriches vast amounts of micropollutants (MPs) when wastewater is treated, posing potential environmental risks. While standard methods typically focus on target analysis of known compounds, the identity, structure, and concentration of transformation products (TPs) of MPs remain less understood. Here, we employed a novel approach that integrates machine learning for the quantification of nontarget TPs with advanced target, suspect, and nontarget screening strategies.
View Article and Find Full Text PDFNeural Netw
December 2024
Department of Earth Science and Engineering, Imperial College London, Prince Consort Road, London SW7 2BP, UK; Centre for AI-Physics Modelling, Imperial-X, White City Campus, Imperial College London, W12 7SL, UK.
Machine learning (ML) has benefited from both software and hardware advancements, leading to increasing interest in capitalising on ML throughout academia and industry. There have been efforts in the scientific computing community to leverage this development via implementing conventional partial differential equation (PDE) solvers with machine learning packages, most of which rely on structured spatial discretisation and fast convolution algorithms. However, unstructured meshes are favoured in problems with complex geometries.
View Article and Find Full Text PDFTher Adv Respir Dis
January 2025
Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Hospital, 4800 Sand Point Way NE, OC 7.730, Seattle, WA 98105, USA.
Background: Joubert syndrome (JS) is an autosomal recessive disorder with a distinctive mid-hindbrain malformation known as the "molar tooth sign" which involves the breathing control center and its connections with other structures. Literature has reported significant respiratory abnormalities which included hyperpnea interspersed with apneic episodes during wakefulness. Larger-scale studies looking at polysomnographic findings or subjective reports of sleep problems in this population have not yet been published.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA.
Bone is a multifaceted tissue requiring orchestrated interplays of diverse cells within specialized microenvironments. Although significant progress has been made in understanding cellular and molecular mechanisms of component cells of bone, revealing their spatial organization and interactions in native bone tissue microenvironment is crucial for advancing precision medicine, as they govern fundamental signaling pathways and functional dependencies among various bone cells. In this study, we present the first integrative high-resolution map of human bone and bone marrow, using spatial and single-cell transcriptomics profiling from femoral tissue.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
The spatial organization of the genome plays a critical role in regulating gene expression, cellular differentiation, and genome stability. This review provides an in-depth examination of the methodologies, computational tools, and frameworks developed to map the three-dimensional (3D) architecture of the genome, focusing on both ligation-based and ligation-free techniques. We also explore the limitations of these methods, including biases introduced by restriction enzyme digestion and ligation inefficiencies, and compare them to more recent ligation-free approaches such as Genome Architecture Mapping (GAM) and Split-Pool Recognition of Interactions by Tag Extension (SPRITE).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!