HIV integrase (IN) is an essential enzyme for the viral replication. Currently, three IN inhibitors have been approved for treating HIV-1 infection. All three drugs selectively inhibit the strand transfer reaction by chelating a divalent metal ion in the enzyme active site. Flavonoids are a well-known class of natural products endowed with versatile biological activities. Their β-ketoenol or catechol structures can serve as a metal chelation motif and be exploited for the design of novel IN inhibitors. Using the metal chelation as a common pharmacophore, we introduced appropriate hydrophobic moieties into the flavonol core to design natural product-based novel IN inhibitors. We developed selective and efficient syntheses to generate a series of mono 3/5/7/3'/4'-substituted flavonoid derivatives. Most of these new compounds showed excellent HIV-1 IN inhibitory activity in enzyme-based assays and protected against HIV-1 infection in cell-based assays. The 7-morpholino substituted 7c showed effective antiviral activity (EC50=0.826 μg/mL) and high therapeutic index (TI>242). More significantly, these hydroxyflavones block the IN-LEDGF/p75 interaction with low- to sub-micromolar IC50 values and represent a novel scaffold to design new generation of drugs simultaneously targeting the catalytic site as well as protein-protein interaction domains.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2014.04.016DOI Listing

Publication Analysis

Top Keywords

active site
8
hiv-1 infection
8
metal chelation
8
novel inhibitors
8
design
4
design discovery
4
discovery flavonoid-based
4
hiv-1
4
flavonoid-based hiv-1
4
hiv-1 integrase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!