We are just beginning to exploit the fascinating potential of thionine, called electrochemical probe that can selectively recognize specific polycyclic aromatic hydrocarbons (PAHs), as tools for the detection of tricyclic aromatic hydrocarbons phenanthrene (PHE) and anthracene (ANT). A novel electrochemical sensing platform by modification of electroactive thionine functionalized graphene onto glass carbon electrode (Th/GRs/GCE) surface was constructed. The immobilized thionine showed a remarkable stability, which may benefit from the π-π stacking force with graphene. Under optimum conditions, the proposed electrochemical sensor exhibited high sensitivity and low detection limit for detecting PHE and ANT. The total amount of PHE and ANT could be quantified in a wide range of 10pM-0.1μM with a good linearity (R(2)=0.9979) and a low detection limit of 0.1pM (S/N=3). Compounds which possess one or two benzene rings or PAHs with more than three rings, such as benzene, naphthalene (NAP), benzo[a]pyrene (BaP) and pyrene (PYR) show little interference on the detection. Consequently, a simple and sensitive electrochemical method was proposed for the determination of PHE and ANT, which was used to determine PHE and ANT in waste water samples. The electrochemical method provides a general tool that complements the commonly used spectroscopic methods and immune method for the detection of PAHs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2014.04.010 | DOI Listing |
Water Res
January 2025
College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China. Electronic address:
The effective production of NO-N through endogenous partial denitrification (EPD) provides a promising perspective for the broader adoption and application of anaerobic ammonia oxidation. However, the accumulation of polycyclic aromatic hydrocarbons (PAHs) in the environment may worsen the operational challenges of the EPD system. This study evaluated the resilience of the EPD system to the toxic impacts of phenanthrene (PHE) and anthracene (ANT) through macrogenomic analysis.
View Article and Find Full Text PDFInt J Food Sci
October 2024
Food Systems Chemistry, Toxicology, and Risks Studies, Department of Food Science and Technology, College of Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana.
The polycyclic aromatic hydrocarbons (PAHs) congener concentrations and risk upon human exposure to smoked bushmeat products were analyzed. GC/MS MRM and QuEChERS methods were used for the analysis. This work has become necessary due to the need for more information concerning the quantitative determination of these compounds and their health risk assessment.
View Article and Find Full Text PDFChemistry
November 2024
School of Materials Science and Engineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, 400054, Chongqing, P. R. China.
As family members of polycyclic aromatic hydrocarbons, compound anthracene (Ant) and phenanthrene (Phe) as isomers are widely used in organic optical materials and electronic materials. But their photochemical and physical properties are very different. In this work, the room temperature phosphorescence (RTP) properties of PVA-B-Ant and PVA-B-Phe are discussed carefully which are prepared by B-O click reaction through polyvinyl alcohol (PVA) with 9-anthraceneboronic acid (B-Ant) and 9-phenanthrenylboronic acid (B-Phe), respectively.
View Article and Find Full Text PDFMar Pollut Bull
August 2024
East China Sea Environmental Monitoring Center, State Oceanic Administration, Shanghai 201206, PR China. Electronic address:
This study aims to investigate the interactions between marine oil snow (MOS) formation and soot particles derived from two distinct oils: condensate and heavy oil. Experimental findings demonstrate that the properties of oil droplets and soot particles play a key role in MOS formation. Peak MOS formation is observed within the initial days for condensate, while for heavy oil, peak formation occurs at a later stage.
View Article and Find Full Text PDFJ Antimicrob Chemother
July 2024
Department of Microbiology and Instituto Biosanitario de Granada, University Hospital of Virgen de las Nieves, Avda. Fuerzas Armadas s/n, 18014 Granada, Spain.
Background: Bacteroides fragilis, an anaerobic gut bacterium and opportunistic pathogen, comprises two genetically divergent groups (or divisions) at the species level. Differences exist both in the core and accessory genomes and the beta-lactamase genes, with the cephalosporinase gene cepA represented only in division I and the carbapenemase gene cfiA only in division II.
Methods: Multidrug resistance in a clinical B.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!