Atomic force microscopy in biofilm study.

Microscopy (Oxf)

Department of Microbiology, Institute of Post Graduate Medical Education and Research, 244 AJC Bose Road, Kolkata 700 020, India.

Published: August 2014

Biofilms have been classically visualized by Scanning Electron Microscopy (SEM). The complex operating procedure of SEM restricts its use in routine practice. There is a need of newer visualizing techniques for examining surfaces of biofilms, in particular under ambient conditions. We have presented the unique advantages of atomic force microscopy (AFM) in studying surfaces of biofilms through analyses of the height images obtained on biofilms of two gram positive and one gram negative bacteria, namely Staphylococcus aureus, Nocardia brasiliensis and Pseudomonas aeruginosa, respectively. Biofilm quality of the three different bacteria, ageing effects on Nocardia spp. biofilm surface and effects of the antibiotic ciprofloxacin at different doses on Staphylococcus and Pseudomonas biofilm surfaces have been investigated under ambient conditions and distinctive features have been observed.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jmicro/dfu013DOI Listing

Publication Analysis

Top Keywords

atomic force
8
force microscopy
8
surfaces biofilms
8
ambient conditions
8
biofilm
4
microscopy biofilm
4
biofilm study
4
biofilms
4
study biofilms
4
biofilms classically
4

Similar Publications

Horizontal Distortion Correction of AFM Images Based on Automatic Labeling of Feature Graphics.

Microsc Res Tech

January 2025

School of Electrical & Control Engineering, Shenyang Jianzhu University, Shenyang, China.

The atomic force microscope (AFM) image will be inclined and bent due to the tilt angle between the probe and the sample surface. When the least squares fitting method is used to correct the horizontal distortion of the AFM image, the shape structure that is lower or higher than the sample base will affect the final fitting correction result. In view of the limitations of existing methods and the diversity of AFM images, an AFM image level distortion correction method based on automatic feature marking is proposed.

View Article and Find Full Text PDF

Introduction: To evaluate the enamel abrasion effects of soft, ultra-soft, and nano-bristle toothbrushes using atomic force microscopy (AFM) to guide toothbrush selection for optimal enamel preservation.

Methods: This in vitro study involved 45 extracted human teeth (central and lateral incisors), randomly assigned to three groups (n=15 each): Group I (nano-bristle), Group II (ultra-soft bristle), and Group III (soft bristle). Each specimen underwent 10,000 brushing cycles with a standardized 2 N force to simulate one year of brushing.

View Article and Find Full Text PDF

Introduction: Anxiety disorders are among the most common mental illnesses in the US. An estimated 31.1% of U.

View Article and Find Full Text PDF

The reduced dimensionality of thin transition metal dihalide films on single-crystal surfaces unlocks a diverse range of magnetic and electronic properties. However, achieving stoichiometric monolayer islands requires precise control over the growth conditions. In this study, we employ scanning probe microscopy to investigate the growth of MnI on Ag(111) via single-crucible evaporation.

View Article and Find Full Text PDF

The study of emerging contaminants (ECs) in water resources has garnered significant attention due to their potential risks to human health and the environment. This review examines the contribution from computational approaches, focusing on the application of machine learning (ML) and molecular dynamics (MD) simulations to understand and optimize experimental applications of ECs adsorption on carbon-based nanomaterials. Condensed matter physics plays a crucial role in this research by investigating the fundamental properties of materials at the atomic and molecular levels, enabling the design and engineering of materials optimized for contaminant removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!