Mitochondrial diseases are characterised by a broad clinical and genetic heterogeneity that makes diagnosis difficult. Owing to the wide pattern of symptoms in mitochondrial disorders and the constantly growing number of disease genes, their genetic diagnosis is difficult and genotype/phenotype correlations remain elusive. Brain MRI appears as a useful tool for genotype/phenotype correlations. Here, we summarise the various combinations of MRI lesions observed in the most frequent mitochondrial respiratory chain deficiencies so as to direct molecular genetic test in patients at risk of such diseases. We believe that the combination of brain MRI features is of value to support respiratory chain deficiency and direct molecular genetic tests.

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2013-102256DOI Listing

Publication Analysis

Top Keywords

respiratory chain
12
brain mri
12
genotype/phenotype correlations
12
mitochondrial respiratory
8
chain deficiency
8
combination brain
8
mri features
8
tool genotype/phenotype
8
diagnosis difficult
8
direct molecular
8

Similar Publications

Understanding charge transport in semiconductor quantum dot (QD) assemblies is important for developing the next generation of solar cells and light-harvesting devices based on QD technology. One of the key factors that governs the transport in such systems is related to the hybridization between the QDs. Recent experiments have successfully synthesized QD molecules, arrays, and assemblies by directly fusing the QDs, with enhanced hybridization leading to high carrier mobilities and coherent band-like electronic transport.

View Article and Find Full Text PDF

In the ancient microbial Wood-Ljungdahl pathway, carbon dioxide (CO) is fixed in a multistep process that ends with acetyl-coenzyme A (acetyl-CoA) synthesis at the bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase complex (CODH/ACS). In this work, we present structural snapshots of the CODH/ACS from the gas-converting acetogen , characterizing the molecular choreography of the overall reaction, including electron transfer to the CODH for CO reduction, methyl transfer from the corrinoid iron-sulfur protein (CoFeSP) partner to the ACS active site, and acetyl-CoA production. Unlike CODH, the multidomain ACS undergoes large conformational changes to form an internal connection to the CODH active site, accommodate the CoFeSP for methyl transfer, and protect the reaction intermediates.

View Article and Find Full Text PDF

One strategy for CO mitigation is using photosynthetic microorganisms to sequester CO under high concentrations, such as in flue gases. While elevated CO levels generally promote growth, excessively high levels inhibit growth through uncertain mechanisms. This study investigated the physiology of the cyanobacterium Synechocystis sp.

View Article and Find Full Text PDF

Objective: This study aimed to screen the differentially expressed genes (DEGs) of under UV-B stress and identify the significant pathways based on gene enrichment analysis results.

Methods: In this study, the allotetraploid crop was used to examine changes in various physiological indexes under UV-B stress, and screened out all DEGs under UV-B stress (16 kJ m d) based on six leaf transcriptomes. The main enrichment pathways of DEGs were analyzed according to gene annotation.

View Article and Find Full Text PDF

Morphological and molecular phylogeny of sp. (Digenea: Clinostomidae) metacercariae, using DNA barcode from a South American freshwater fish.

J Helminthol

January 2025

Universidade Federal de Alagoas (UFAL), Instituto de Ciências Biológicas e da Saúde, Departamento de Patologia e Parasitologia, Maceió, Alagoas, Brasil.

Here, we present a comprehensive morphological and molecular phylogenetic analysis of sp. (Digenea: Clinostomidae) metacercariae parasitizing two freshwater fish species from Southeast Brazil: (piranha) and (tambuatá). The morphological examination revealed distinct characteristics of metacercariae in each host.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!