Introduction: A radioligand for measuring the density of corticotropin-releasing factor subtype-1 receptors (CRF1 receptors) in living animal and human brain with positron emission tomography (PET) would be a useful tool for neuropsychiatric investigations and the development of drugs intended to interact with this target. This study was aimed at discovery of such a radioligand from a group of CRF1 receptor ligands based on a core 3-(phenylamino)-pyrazin-2(1H)-one scaffold.
Methods: CRF1 receptor ligands were selected for development as possible PET radioligands based on their binding potency at CRF1 receptors (displacement of [(125)I]CRF from rat cortical membranes), measured lipophilicity, autoradiographic binding profile in rat and rhesus monkey brain sections, rat biodistribution, and suitability for radiolabeling with carbon-11 or fluorine-18. Two identified candidates (BMS-721313 and BMS-732098) were labeled with fluorine-18. A third candidate (BMS-709460) was labeled with carbon-11 and all three radioligands were evaluated in PET experiments in rhesus monkey. CRF1 receptor density (Bmax) was assessed in rhesus brain cortical and cerebellum membranes with the CRF1 receptor ligand, [(3)H]BMS-728300.
Results: The three ligands selected for development showed high binding affinity (IC50 values, 0.3-8nM) at CRF1 receptors and moderate lipophilicity (LogD, 2.8-4.4). [(3)H]BMS-728300 and the two (18)F-labeled ligands showed region-specific binding in rat and rhesus monkey brain autoradiography, namely higher binding density in the frontal and limbic cortex, and cerebellum than in thalamus and brainstem. CRF1 receptor Bmax in rhesus brain was found to be 50-120 fmol/mg protein across cortical regions and cerebellum. PET experiments in rhesus monkey showed that the radioligands [(18)F]BMS-721313, [(18)F]BMS-732098 and [(11)C]BMS-709460 gave acceptably high brain radioactivity uptake but no indication of the specific binding as seen in vitro.
Conclusions: Candidate CRF1 receptor PET radioligands were identified but none proved to be effective for imaging monkey brain CRF1 receptors. Higher affinity radioligands are likely required for successful PET imaging of CRF1 receptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4072041 | PMC |
http://dx.doi.org/10.1016/j.nucmedbio.2014.03.005 | DOI Listing |
Brain Struct Funct
December 2024
Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Sciences Center-Houston, Houston, TX, USA.
Corticotropin-releasing hormone (CRH) signaling through its cognate receptors, CRHR1 and CRHR2, contributes to diverse stress-related functions in the mammalian brain. Whereas CRHR2 is predominantly expressed in choroid plexus and blood vessels, CRHR1 is abundantly expressed in neurons in discrete brain regions, including the neocortex, hippocampus and nucleus accumbens. Activation of CRHR1 influences motivated behaviors, emotional states, and learning and memory.
View Article and Find Full Text PDFNeuropharmacology
March 2025
Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany. Electronic address:
During the transition to motherhood, complex brain adaptations occur to ensure adequate maternal responses to offspring' needs accompanied by reduced anxiety. Among others, the corticotropin-releasing factor (CRF) and oxytocin (OXT) systems have emerged as crucial regulators of these essential postpartum adaptations. Here, we investigated their roles within the nucleus accumbens shell (NAcSh), a central region of the reward and maternal circuits, in maternal neglect of lactating rats.
View Article and Find Full Text PDFPharmacol Biochem Behav
December 2024
Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA. Electronic address:
Life Sci
January 2025
Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea. Electronic address:
Peptides
December 2024
Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary.
Corticotropin-releasing factor (CRF) activates the hypothalamic-pituitary-adrenal (HPA) axis and stimulates the noradrenergic neurotransmission, both processes being implicated in the pathogenesis of anxiety and depression, but the intimate site and mechanism of interaction of CRF and CRF-related peptides, named urocortins (UCN1, UCN2, UCN3), with noradrenaline (NA) was not fully elucidated yet. Therefore, the aim of the present study was to investigate the actions of CRF and urocortins on the NA released from the rat locus coeruleus (LC), the primary source of NA in the brain, and the participation of CRF receptors (CRF1 and CRF2) in these actions. In order to do so, male Wistar rats were used, their LC were isolated and dissected, and the LC slices were incubated with tritium-labelled NA, superfused and stimulated electrically.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!