This work proposes a long range ultrasonic transducers technique in conjunction with an active incremental Support Vector Machine (SVM) classification approach that is used for real-time pipeline defects prediction and condition monitoring. Oil and gas pipeline defects are detected using various techniques. One of the most prevalent techniques is the use of "smart pigs" to travel along the pipeline and detect defects using various types of sensors such as magnetic sensors and eddy-current sensors. A critical short coming of "smart pigs" is the inability to monitor continuously and predict the onset of defects. The emergence of permanently installed long range ultrasonics transducers systems enable continuous monitoring to be achieved. The needs for and the challenges of the proposed technique are presented. The experimental results show that the proposed technique achieves comparable classification accuracy as when batch training is used, while the computational time is decreased, using 56 feature data points acquired from a lab-scale pipeline defect generating experimental rig.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultras.2014.03.017 | DOI Listing |
BMC Genomics
January 2025
International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, Księcia Trojdena 4, Warsaw, 02-109, Poland.
Congenital heart disease (CHD) is a prevalent condition characterized by defective heart development, causing premature death and stillbirths among infants. Genome-wide association studies (GWASs) have provided insights into the role of genetic variants in CHD pathogenesis through the identification of a comprehensive set of single-nucleotide polymorphisms (SNPs). Notably, 90-95% of these variants reside in the noncoding genome, complicating the understanding of their underlying mechanisms.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden.
Background: Noninvasive prenatal testing (NIPT) is increasingly used to screen for fetal chromosomal aneuploidy by analyzing cell-free DNA (cfDNA) in peripheral maternal blood. The method provides an opportunity for early detection of large genetic abnormalities without an increased risk of miscarriage due to invasive procedures. Commercial applications for use at clinical laboratories often take advantage of DNA sequencing technologies and include the bioinformatic workup of the sequence data.
View Article and Find Full Text PDFJHEP Rep
February 2025
Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany.
Background & Aims: Biliary abnormalities in autoimmune hepatitis (AIH) and interface hepatitis in primary biliary cholangitis (PBC) occur frequently, and misinterpretation may lead to therapeutic mistakes with a negative impact on patients. This study investigates the use of a deep learning (DL)-based pipeline for the diagnosis of AIH and PBC to aid differential diagnosis.
Methods: We conducted a multicenter study across six European referral centers, and built a library of digitized liver biopsy slides dating from 1997 to 2023.
Magn Reson Med
January 2025
Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.
Purpose: Pulmonary MRI faces challenges due to low proton density, rapid transverse magnetization decay, and cardiac and respiratory motion. The fermat-looped orthogonally encoded trajectories (FLORET) sequence addresses these issues with high sampling efficiency, strong signal, and motion robustness, but has not yet been applied to phase-resolved functional lung (PREFUL) MRI-a contrast-free method for assessing pulmonary ventilation during free breathing. This study aims to develop a reconstruction pipeline for FLORET UTE, enhancing spatial resolution for three-dimensional (3D) PREFUL ventilation analysis.
View Article and Find Full Text PDFHeliyon
January 2025
BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
Deformable image registration is a cornerstone of many medical image analysis applications, particularly in the context of fetal brain magnetic resonance imaging (MRI), where precise registration is essential for studying the rapidly evolving fetal brain during pregnancy and potentially identifying neurodevelopmental abnormalities. While deep learning has become the leading approach for medical image registration, traditional convolutional neural networks (CNNs) often fall short in capturing fine image details due to their bias toward low spatial frequencies. To address this challenge, we introduce a deep learning registration framework comprising multiple cascaded convolutional networks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!