Intervertebral disc mechanics are affected by both disc shape and disc degeneration, which in turn each affect the other; disc mechanics additionally have a role in the etiology of disc degeneration. Finite element analysis (FEA) is a favored tool to investigate these relationships, but limited data for intervertebral disc 3D shape has forced the use of simplified or single-subject geometries, with the effect of inter-individual shape variation investigated only in specialized studies. Similarly, most data on disc shape variation with degeneration is based on 2D mid-sagittal images, which incompletely define 3D shape changes. Therefore, the objective of this study was to quantify inter-individual disc shape variation in 3D, classify this variation into independently-occurring modes using a statistical shape model, and identify correlations between disc shape and degeneration. Three-dimensional disc shapes were obtained from MRI of 13 human male cadaver L3L4 discs. An average disc shape and four major modes of shape variation (representing 90% of the variance) were identified. The first mode represented disc axial area and was significantly correlated to degeneration (R(2)=0.44), indicating larger axial area in degenerate discs. Disc height variation occurred in three distinct modes, each also involving non-height variation. The statistical shape model provides an average L3L4 disc shape for FEA that is fully defined in 3D, and makes it convenient to generate a set of shapes with which to represent aggregate inter-individual variation. Degeneration grade-specific shapes can also be generated. To facilitate application, the model is included in this paper׳s supplemental content.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4115453 | PMC |
http://dx.doi.org/10.1016/j.jbiomech.2014.04.014 | DOI Listing |
Curr Opin Crit Care
January 2025
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS).
Purpose Of Review: This narrative review discusses the mechanisms connecting gut dysbiosis to adverse clinical outcomes in critically ill patients and explores potential therapeutic strategies.
Recent Findings: In recent years, the study of microbiota in ICUs has gained attention because of its potential effects on patient outcomes. Critically ill patients often face severe conditions, which can compromise their immune systems and lead to opportunistic infections from bacteria typically harmless to healthy individuals.
Clin Ophthalmol
January 2025
University Eye Clinic Maastricht, Maastricht, the Netherlands.
Purpose: This study aims to explore the diagnostic utility of ultrasound B-scan while introducing the "Triangle" sign as a novel indicator. It also validates the sign's efficacy in distinguishing between choroidal detachment (CD) and suprachoroidal hemorrhage (SCH) from retinal detachment (RD) and vitreous hemorrhage (VH).
Patients And Methods: Retrospective analysis of consecutive cases of total CD and SCH undergoing B-scan at a single tertiary imaging center.
Ophthalmic Physiol Opt
January 2025
Robert O Curle Ophthalmology Suite, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
Purpose: To determine whether imaging features derived from fundus photographs contain 3D eye shape information beyond that available from spherical equivalent refraction (SER).
Methods: We analysed 99 eyes of 68 normal adults in the UK Biobank. An ellipsoid was fitted to the entire volume of each posterior eye (vitreous chamber without the lens)-segmented from magnetic resonance imaging of the brain.
Arthroscopy
January 2025
Fellowship Director Emeritus, Plano Orthopedic and Sports Medicine Center, Plano Texas.
A free-floating disc shaped polycarbonate-urethane ultra-high molecular weight polyethylene fiber reinforced medial compartment implant is designed for symptomatic postmedial meniscectomy syndrome. Because it is not sutured into place, an intact 2mm meniscus rim with intact anterior and posterior meniscal horns are required. In a recent 24-month follow-up study, only 64% of the original implants were retained.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
This paper presents, for the first time, a rotary actuator functionalized by an inclined disc rotor that serves as a distal optical scanner for endoscopic probes, enabling side-viewing endoscopy in luminal organs using different imaging/analytic modalities such as optical coherence tomography and Raman spectroscopy. This scanner uses a magnetic rotor designed to have a mirror surface on its backside, being electromagnetically driven to roll around the cone-shaped hollow base to create a motion just like a precessing coin. An optical probing beam directed from the probe's optic fiber is passed through the hollow cone to be incident and bent on the back mirror of the rotating inclined rotor, circulating the probing beam around the scanner for full 360° sideway imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!