Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Patients with hypervolemic hyponatremia and kidney failure pose a special therapeutic challenge. Hemodialysis to correct volume overload, azotemia, and abnormal electrolyte levels will result in rapid correction of serum sodium concentration and place the patient at risk for osmotic demyelination syndrome. We present a patient with acute kidney injury and severe hypervolemic hypotonic hyponatremia (serum sodium<100 mEq/L) who was treated successfully with continuous venovenous hemofiltration. This teaching case illustrates the limitations of hemodialysis and demonstrates how to regulate the sodium correction rate by single-pool sodium kinetic modeling during continuous venovenous hemofiltration. Two methods to adjust the replacement fluid to achieve the desired sodium concentration are outlined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.ajkd.2014.01.451 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!