Background: Platinum resistance is a major limitation in the treatment of advanced non-small cell lung cancer (NSCLC). We previously demonstrated that low tissue platinum concentration in NSCLC specimens was significantly associated with reduced tumor response. Furthermore, low expression of the copper transporter CTR1, a transporter of platinum uptake was associated with poor clinical outcome following platinum-based therapy in NSCLC patients. We investigated the relationship between tissue platinum concentrations and CTR1 expression in NSCLC specimens.
Methods: We identified paraffin-embedded NSCLC tissue blocks of known tissue platinum concentrations from 30 patients who underwent neoadjuvant platinum-based chemotherapy at MD Anderson Cancer Center. Expression of CTR1 in tumors and normal adjacent lung specimens was determined by immunohistochemistry with adequate controls.
Results: Tissue platinum concentration significantly correlated with tumor response in 30 patients who received neoadjuvant platinum-based chemotherapy (P<0.001). CTR1 was differentially expressed in NSCLC tumors. A subset of patients with undetectable CTR1 expression in their tumors had reduced platinum concentrations (P=0.058) and tumor response (P=0.016) compared to those with any level of CTR1 expression. We also observed that African Americans had significantly reduced CTR1 expression scores (P=0.001), tissue platinum concentrations (P=0.009) and tumor shrinkage (P=0.016) compared to Caucasians.
Conclusions: To our best knowledge this is the first study investigating the function of CTR1 in clinical specimens. CTR1 expression may be necessary for therapeutic efficacy of platinum drugs, consistent with previous preclinical studies. A prospective clinical trial is necessary to develop CTR1 into a potential biomarker for platinum drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090351 | PMC |
http://dx.doi.org/10.1016/j.lungcan.2014.04.005 | DOI Listing |
Pharmaceutics
January 2025
Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA.
Focused ultrasound has advantages as an external stimulus for drug delivery as it is non-invasive, has high precision and can penetrate deep into tissues. Here, we report a gold-plated alginate (ALG) hydrogel system that retains highly water-soluble small-molecule fluorescein for sharp off/on release after ultrasound exposure. The ALG is crosslinked into beads with calcium chloride and layered with a polycation to adjust the surface charge for the adsorption of catalytic platinum nanoparticles (Pt NPs).
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai 200433, China.
Minimally invasive endovascular stent electrodes are an emerging technology in neural engineering, designed to minimize the damage to neural tissue. However, conventional stent electrodes often rely on resistive welding and are relatively bulky, restricting their use primarily to large animals or thick blood vessels. In this study, the feasibility is explored of fabricating a laser welding stent electrode as small as 300 μm.
View Article and Find Full Text PDFBackground: Neuroendocrine carcinomas (NECs) are treated with a frontline platinum-etoposide combination with no standard second-line therapies. We explored a novel combination of nanoliposomal irinotecan (Nal-IRI), 5-fluorouracil (5-FU), and leucovorin (LV) in advanced refractory NECs and investigated the impact of UGT1A1*28 polymorphism on treatment outcomes and toxicity.
Methods: We conducted an open-label, single-arm, multi-center Phase 2 trial in advanced NEC patients of gastroenteropancreatic (GEP) or unknown origin with progression or intolerance to first-line therapy.
Diagnostics (Basel)
January 2025
Department of Pulmonology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania.
Cryotherapy is used for local tissue destruction through rapid freeze-thaw cycles. It induces cancer cell necrosis followed by inflammation in the treated tumor microenvironment, and it stimulates systemic adaptive immunity. Combining cryotherapy with immunotherapy may provide a sustained immune response by preventing T cell exhaustion.
View Article and Find Full Text PDFJ Biol Inorg Chem
January 2025
Department of Chemistry, Wayne State University, Detroit, MI, USA.
The discovery of cisplatin (cisPt) as an effective anticancer agent was a milestone in the health industry. Despite its success, undesired side effects and acquired resistance still limit the therapeutic usefulness of cisPt. Intrastrand adduct formation at consecutive purines and structural modifications of DNA caused by platinum(II) complexes are important factors for antitumor efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!