The microRNA (miR)-200s and their negative regulator ZEB1 have been extensively studied in the context of the epithelial-mesenchymal transition. Loss of miR-200s has been shown to enhance cancer aggressiveness and metastasis, whereas replacement of miR-200 miRNAs has been shown to inhibit cell growth in several types of tumors, including lung cancer. Here, we reveal a novel function of miR-200c, a member of the miR-200 family, in regulating intracellular reactive oxygen species signaling and explore a potential application for its use in combination with therapies known to increase oxidative stress such as radiation. We found that miR-200c overexpression increased cellular radiosensitivity by direct regulation of the oxidative stress response genes PRDX2, GAPB/Nrf2, and SESN1 in ways that inhibits DNA double-strand breaks repair, increase levels of reactive oxygen species, and upregulate p21. We used a lung cancer xenograft model to further demonstrate the therapeutic potential of systemic delivery of miR-200c to enhance radiosensitivity in lung cancer. Our findings suggest that the antitumor effects of miR-200c result partially from its regulation of the oxidative stress response; they further suggest that miR-200c, in combination with radiation, could represent a therapeutic strategy in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4435581PMC
http://dx.doi.org/10.1038/mt.2014.79DOI Listing

Publication Analysis

Top Keywords

lung cancer
16
oxidative stress
12
delivery mir-200c
8
radiosensitivity lung
8
reactive oxygen
8
oxygen species
8
regulation oxidative
8
stress response
8
mir-200c
6
cancer
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!