This study aims to investigate the preparation process and in vitro release behavior of artesunate polylactic acid microspheres, in order to prepare an artesunate polylactic acid (PLA) administration method suitable for hepatic arterial embolization. With PLA as the material and polyvinyl alcohol (PVA) as the emulsifier, O/W emulsion/solvent evaporation method was adopted to prepare artesunate polylactic acid microspheres, and optimize the preparation process. With drug loading capacity, encapsulation efficiency and particle size as indexes, a single factor analysis was made on PLA concentration, PVA concentration, drug loading ratio and stirring velocity. Through an orthogonal experiment, the optimal processing conditions were determined as follows: PLA concentration was 9. 0% , PVA concentration was 0. 9% , drug loading ratio was 1:2 and stirring velocity was 1 000 r x min(-1). According to the verification of the optimal process, microsphere size, drug loading and entrapment rate of artesunate polylactic acid microspheres were (101.7 +/- 0.37) microm, (30.8 +/- 0.84)%, (53.6 +/- 0.62)%, respectively. The results showed that the optimal process was so reasonable and stable that it could lay foundation for further studies.
Download full-text PDF |
Source |
---|
Int J Biol Macromol
July 2023
General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China. Electronic address:
The regimens on colorectal cancer (CRC) are clinically limited due to the ignorance of tumor-supportive microenvironments. To combine the therapeutic effects on both tumor cells growth and immunosuppressive tumor microenvironments (TME), we propose the artesunate (AS) and chloroquine (CQ) combination and develop a poly (d,l-lactide-co-glycolide) (PLGA)-based biomimetic nanoparticle for dual-targeting delivery of the drug combination. Hydroxymethyl phenylboronic acid conjugated PLGA (HPA) is synthesized to form a reactive oxygen species (ROS)-sensitive core of biomimetic nanoparticles.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2022
School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China. Electronic address:
Artesunate (ARS) has been shown to have a protective effect on ulcerative colitis (UC) in mice. However, its lack of targeting and short half-life severely hamper its efficacy. In this study, polylactic acid-glycolic acid copolymer (PLGA) and chitosan (CS) double emulsification solvent volatilisation method was used to prepare a stable nanoemulsion loaded with ARS (CPA).
View Article and Find Full Text PDFInt J Pharm
June 2022
Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120 Halle (Saale), Germany. Electronic address:
Parenteral depot systems can provide a constant release of drugs over a few days to months. Poly-(lactic acid) (PLA) and Poly-(lactide-co-glycolide) (PLGA) are the most commonly used polymers in the production of these systems. Finding alternatives to these polymers is of great importance to avoid certain drawbacks of these polymers (e.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
October 2021
Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China. Electronic address:
Non-small cell lung cancer (NSCLC) has emerged to be a significant cause of cancer mortality worldwide. Artesunate (ART) extracted from Chinese herb Artemisia annua L, has been proven to possess desirable anti-cancer efficacy, especially for the metastatic NSCLC treatment. Moreover, the poly(lactic-co-glycolic acid) (PLGA) microsphere has been considered to be a potential pulmonary delivery system for the sustained drug release to enhance the therapeutic efficacy of lung cancer.
View Article and Find Full Text PDFInt J Biol Macromol
June 2021
Department of Cardiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China. Electronic address:
Conventional tumor chemotherapy is limited by its low therapeutic efficacy and side effects, which severely hold back its further application as a first-line agent in clinic. To improve the cure efficacy of cancer, nanozyme with enzyme-like activity has now been extensively investigated as a new strategy for tumor treatment. Herein, an anti-tumor platform based on manganese oxides (MnO) modified poly (lactic-co-glycolic acid) (PLGA)@polydopamine (PDA) nanoparticles (PP-MnO NPs) as an oxidase mimic was developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!