Objective: Inflammatory conditions provoke essential processes in the human vascular system. It leads to the formation of ultralarge von Willebrand factor (VWF) fibers, which are immobilized on the endothelial cell surface and transform to highly adhesive strings under shear conditions. Furthermore, leukocytes release a meshwork of DNA (neutrophil extracellular traps) during the process of the recently discovered cell death program NETosis. In the present study, we characterized the interaction between VWF and DNA and possible binding sites to underline the role of VWF in thrombosis and inflammation besides its function in platelet adhesion.
Approach And Results: Both functionalized surfaces and intact cell layers of human umbilical vein endothelial cells were perfused with isolated, protein-free DNA or leukocytes from whole blood at distinct shear rates. DNA-VWF interaction was monitored using fluorescence microscopy, ELISA-based assays, molecular dynamics simulations, and electrostatic potential calculations. Isolated DNA, as well as DNA released by stimulated leukocytes, was able to bind to shear-activated, but not inactivated, VWF. However, DNA-VWF binding does not alter VWF degradation by a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13. Moreover, DNA-VWF interaction can be blocked using unfractionated and low-molecular-weight heparin, and DNA-VWF complexes attenuate platelet binding to VWF. These findings were supported using molecular dynamics simulations and electrostatic calculations of the A1- and A2-domains.
Conclusions: Our findings suggest that VWF directly binds and immobilizes extracellular DNA released from leukocytes. Therefore, we hypothesize that VWF might act as a linker for leukocyte adhesion to endothelial cells, supporting leukocyte extravasation and inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/ATVBAHA.113.303016 | DOI Listing |
Virchows Arch
December 2021
Department of Plastic Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Merkel cell carcinoma (MCC) is a rare and aggressive neuroendocrine malignancy of the skin. The cell of origin of MCC is thus far unknown and proposed cells of origin include Merkel cells, pro-/pre- or pre-B cells, epithelial stem cells, and dermal stem cells. In this study, we aimed to shed further light on the possibility that a subset of MCC tumors arise from epithelial stem cells of the skin by examining the expression of hair follicle and epidermal stem cell markers in MCC and normal human skin.
View Article and Find Full Text PDFAm J Med Genet A
June 2021
The Folkhaelsan Department of Medical Genetics, The Folkhaelsan Institute of Genetics and the Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.
J Transl Med
October 2020
Institute of Neurophysiology, Medical Faculty Mannheim, University Heidelberg, Heidelberg, Germany.
J Eur Acad Dermatol Venereol
February 2019
Department of Dermatology, Allergology and Venereology, Helsinki University Central Hospital, Helsinki, Finland.
Transplantation
January 2016
1 Transplantation Laboratory, University of Helsinki, Helsinki, Finland. 2 Department of surgery, Oulu University Central Hospital, Oulu, Finland. 3 Transplantation and Liver Surgery Unit, Helsinki University Central Hospital, Helsinki, Finland. 4 Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!