von Willebrand factor directly interacts with DNA from neutrophil extracellular traps.

Arterioscler Thromb Vasc Biol

From the Experimental Dermatology Division, Department of Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (S.G., V.H., K.I.P., C.G., S.W.S.); Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany (C.A.-S., F.G.); Theory Department, Fritz Haber Institute of the Max Planck Society, Berlin, Germany (C.B.); and Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany (R.S., T.O.).

Published: July 2014

Objective: Inflammatory conditions provoke essential processes in the human vascular system. It leads to the formation of ultralarge von Willebrand factor (VWF) fibers, which are immobilized on the endothelial cell surface and transform to highly adhesive strings under shear conditions. Furthermore, leukocytes release a meshwork of DNA (neutrophil extracellular traps) during the process of the recently discovered cell death program NETosis. In the present study, we characterized the interaction between VWF and DNA and possible binding sites to underline the role of VWF in thrombosis and inflammation besides its function in platelet adhesion.

Approach And Results: Both functionalized surfaces and intact cell layers of human umbilical vein endothelial cells were perfused with isolated, protein-free DNA or leukocytes from whole blood at distinct shear rates. DNA-VWF interaction was monitored using fluorescence microscopy, ELISA-based assays, molecular dynamics simulations, and electrostatic potential calculations. Isolated DNA, as well as DNA released by stimulated leukocytes, was able to bind to shear-activated, but not inactivated, VWF. However, DNA-VWF binding does not alter VWF degradation by a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13. Moreover, DNA-VWF interaction can be blocked using unfractionated and low-molecular-weight heparin, and DNA-VWF complexes attenuate platelet binding to VWF. These findings were supported using molecular dynamics simulations and electrostatic calculations of the A1- and A2-domains.

Conclusions: Our findings suggest that VWF directly binds and immobilizes extracellular DNA released from leukocytes. Therefore, we hypothesize that VWF might act as a linker for leukocyte adhesion to endothelial cells, supporting leukocyte extravasation and inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.113.303016DOI Listing

Publication Analysis

Top Keywords

von willebrand
8
willebrand factor
8
dna neutrophil
8
neutrophil extracellular
8
extracellular traps
8
vwf
8
endothelial cells
8
dna-vwf interaction
8
molecular dynamics
8
dynamics simulations
8

Similar Publications

Merkel cell carcinoma (MCC) is a rare and aggressive neuroendocrine malignancy of the skin. The cell of origin of MCC is thus far unknown and proposed cells of origin include Merkel cells, pro-/pre- or pre-B cells, epithelial stem cells, and dermal stem cells. In this study, we aimed to shed further light on the possibility that a subset of MCC tumors arise from epithelial stem cells of the skin by examining the expression of hair follicle and epidermal stem cell markers in MCC and normal human skin.

View Article and Find Full Text PDF

A novel MPLKIP-variant in three Finnish patients with non-photosensitive trichothiodystrophy type 4.

Am J Med Genet A

June 2021

The Folkhaelsan Department of Medical Genetics, The Folkhaelsan Institute of Genetics and the Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.

Article Synopsis
  • - Trichothiodystrophy is a rare genetic disorder characterized by abnormal hair development and affects multiple body systems; this study focuses on two Finnish families with this condition.
  • - The researchers identified a new mutation in the MPLKIP gene through whole-exome sequencing, confirming the diagnosis of non-photosensitive trichothiodystrophy type 4 (TTD4) in three patients.
  • - This report enhances understanding of TTD4 by detailing the patients' unique physical traits and comparing their clinical features with previously documented cases.
View Article and Find Full Text PDF
Article Synopsis
  • A study looked at a treatment called L4-DRG stimulation for patients with a painful condition called CRPS.
  • The researchers tested how patients felt different sensations like pain and touch before and after 3 months of treatment.
  • They found that the treatment helped reduce pain for the patients, but it did not change how they felt warmth or touch.
View Article and Find Full Text PDF

Lichen planus pigmentosus-inversus in a Finnish man.

J Eur Acad Dermatol Venereol

February 2019

Department of Dermatology, Allergology and Venereology, Helsinki University Central Hospital, Helsinki, Finland.

View Article and Find Full Text PDF

Oral Platelet-Derived Growth Factor and Vascular Endothelial Growth Factor Inhibitor Sunitinib Prevents Chronic Allograft Injury in Experimental Kidney Transplantation Model.

Transplantation

January 2016

1 Transplantation Laboratory, University of Helsinki, Helsinki, Finland. 2 Department of surgery, Oulu University Central Hospital, Oulu, Finland. 3 Transplantation and Liver Surgery Unit, Helsinki University Central Hospital, Helsinki, Finland. 4 Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland.

Article Synopsis
  • Increased expression of PDGF and VEGF is linked to chronic rejection in kidney transplants, which can lead to allograft loss.
  • Sunitinib, a tyrosine kinase inhibitor, was tested in a rat model and shown to significantly reduce neointimal formation, smooth muscle cell activity, and chronic rejection signs while improving kidney function.
  • The findings suggest that targeting both PDGF and VEGF with sunitinib may offer a promising new approach for preventing chronic rejection in kidney transplant patients.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!