The aim of this work was to automate a sample preparation procedure extracting morphine, hydromorphone, oxymorphone, norcodeine, codeine, dihydrocodeine, oxycodone, 6-monoacetyl-morphine, hydrocodone, ethylmorphine, benzoylecgonine, cocaine, cocaethylene, tramadol, meperidine, pentazocine, fentanyl, norfentanyl, buprenorphine, norbuprenorphine, propoxyphene, methadone and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine from urine samples. Samples were extracted by solid-phase extraction (SPE) with cation exchange cartridges using a TECAN Freedom Evo 100 base robotic system, including a hydrolysis step previous extraction when required. Block modules were carefully selected in order to use the same consumable material as in manual procedures to reduce cost and/or manual sample transfers. Moreover, the present configuration included pressure monitoring pipetting increasing pipetting accuracy and detecting sampling errors. The compounds were then separated in a chromatographic run of 9 min using a BEH Phenyl analytical column on a ultra-performance liquid chromatography-tandem mass spectrometry system. Optimization of the SPE was performed with different wash conditions and elution solvents. Intra- and inter-day relative standard deviations (RSDs) were within ±15% and bias was within ±15% for most of the compounds. Recovery was >69% (RSD < 11%) and matrix effects ranged from 1 to 26% when compensated with the internal standard. The limits of quantification ranged from 3 to 25 ng/mL depending on the compound. No cross-contamination in the automated SPE system was observed. The extracted samples were stable for 72 h in the autosampler (4°C). This method was applied to authentic samples (from forensic and toxicology cases) and to proficiency testing schemes containing cocaine, heroin, buprenorphine and methadone, offering fast and reliable results. Automation resulted in improved precision and accuracy, and a minimum operator intervention, leading to safer sample handling and less time-consuming procedures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jat/bku024 | DOI Listing |
Anal Methods
November 2017
College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China.
A novel method was established using a restricted access material combined with a molecularly imprinted polymer (RAM-MIP) as the sorbent material in solid phase extraction (SPE) for clean-up of α-endosulfan, β-endosulfan, endosulfate, endosulfan-ether, endosulfan lactone, heptachlor, heptachlor--epoxide, and heptachlor--epoxide in pork and gas chromatography (GC) for determination. The RAM-MIP was prepared by precipitation polymerization by using endosulfan as the template, methacrylic acid (MAA) as the monomer, glycidyl methacrylate (GMA) as the pro-hydrophilic co-monomer, ethylene glycol dimethacrylate (EGDMA) as the crosslinker, azobisisobutyronitrile (AIBN) as the initiator, and toluene as the porogen. Ultraviolet spectroscopy (UV) and H-nuclear magnetic resonance (H-NMR) analysis verified that MAA interacted specifically with endosulfan in a ratio of 1 : 1 in the pre-polymerization solution.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China. Electronic address:
Herein, using 1,3,5-triformylphloroglucinol (Tp) and 4,4',4″-(1,3,5-triazine-2,4,6-triyl) tris(1,1'-biphenyl) trianiline (Ttba) as ligands, nitrogen-rich triazine unit-based covalent organic frameworks (COFs) with a suitable pore size, named TpTtba-COFs, were synthesized, and they were employed as adsorbents for the extraction and detection of three bisphenols (BPs)-BP A (BPA), BP B (BPB), and BP S (BPS)-in water. Using 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (Tapt) and 1,3,5-tris(4-aminophenyl)benzene (Tapb) ligands as substitutes for Ttba, nitrogen-rich triazine unit-based COFs with a smaller pore size and nitrogen-poor triazine unit-based COFs, named TpTapt-COFs and TpTapb-COFs, respectively, were also prepared for comparison. The adsorption performances of the three COF adsorbents with regard to the three BPs were tested.
View Article and Find Full Text PDFFood Chem
January 2025
Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China. Electronic address:
Novel core-shell flower-like polyamine/C dual-functional magnetic titanium dioxide-based oligopolymer (FeO@fTiO-PAPMA/C) microspheres were synthesized and used as a magnetic solid-phase extraction (MSPE) adsorbent to purify 52 pesticides in bayberry samples. The FeO@fTiO-PAPMA/C microspheres were fully characterized and it can obviously improve the purification ability of 52 pesticides in bayberry samples. Coupled to LC-MS/MS, the developed method indicated low limits of detection (LODs) and limits of quantification (LOQs) of 0.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
January 2025
Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of New Material and Green Chemistry, Khazar University, 41 Mehseti Street, Baku AZ1096, Azerbaijan. Electronic address:
Free fentanyl is responsible for its pharmacological effects, but its total concentration is typically determined for therapeutic drug monitoring purposes. Determination of fentanyl concentration can help reduce the prescribed doses, leading to fewer side effects and increased effectiveness. Therefore, predicting free drug concentration in pharmaceutical research is crucial.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Department of Ocean Science, Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran.
In recent years, despite significant advances in preconcentration and preparation techniques that have led to efficient recovery and accurate measurement of target compounds. There is still a need to develop adsorbents with unique and efficient features such as high pore volume and surface area, reactivity, easy synthesis, low toxicity, and compatibility with the environment, which increase the adsorption capacity and increase extraction efficiency. Semiconductor nanocrystals called quantum dots (QDs) with a size of less than 10 nm are three-dimensional nanoparticles with a spherical, rod, or disc structure that have significant potential in extraction as adsorbents due to their excellent properties such as low toxicity, reactivity, environmental friendliness, and hydrophilic and hydrophobic interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!