The particle-size effects on the thermodynamic properties and kinetic behavior of a Li(x)FePO(4) electrode have a direct influence on the electrode properties. Thus, the development of high-performance Li-ion batteries containing a Li(x)FePO(4) cathode requires a complete understanding of the reaction mechanism at the atomic/nano/meso scale. In this work, we report electrochemical calorimetric and potentiometric studies on Li(x)FePO(4) electrodes with different particle sizes and clarify the particle-size effect on the reaction mechanism based on the entropy change of (de)lithiation. Electrochemical calorimetry results show that a reduction in particle size shrinks the miscibility gap of Li(x)FePO(4) while potentiometric measurements demonstrate that the Li(x)FePO(4) particles equilibrate into either a kinetically metastable state or a thermodynamically stable state depending on the particle size.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201301219 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!