The local microenvironment plays an important role in maintaining the dynamics of the extracellular matrix and the cell-extracellular matrix relationship. The extracellular matrix is a complex network of macromolecules with distinct mechanical and biochemical characteristics. Disruptions in extracellular matrix homeostasis are associated with the onset of cancer. The extracellular matrix becomes highly disorganized, and the cell-matrix relationship changes, resulting in altered cell-signaling processes and metastasis. Medulloblastoma is one of the most common malignant pediatric brain tumors in the United States. In order to gain a better understanding of the interplay between cell-extracellular matrix interactions and cell-migratory responses in tumors, eight different matrix macromolecule formulations were investigated using a medulloblastoma-derived cell line: poly-D-lysine, matrigel, laminin, collagen 1, fibronectin, a 10% blend of laminin-collagen 1, a 20% blend of laminin-collagen 1, and a cellulose-derived hydrogel, carboxymethylcellulose. Over time, the average changes in cell morphology were quantified in 2D and 3D, as was migration in the presence and absence of the chemoattractant, epidermal growth factor. Data revealed that carboxymethylcellulose allowed for a cell-extracellular matrix relationship typically believed to be present in tumors, with cells exhibiting a rounded, amoeboid morphology consistent with chemotactic migration, while the other matrices promoted an elongated cell shape as well as both haptotactic and chemotactic motile processes. Therefore, carboxymethylcellulose hydrogels may serve as effective platforms for investigating central nervous system-derived tumor-cell migration in response to soluble factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0885328214532969 | DOI Listing |
J Orthop Surg Res
January 2025
Monash Suzhou Research Institute, Monash University, Suzhou, 215000, Jiangsu, China.
Backgrounds: Osteoarthritis (OA) significantly impacts the elderly, leading to disability and decreased quality of life. While hyaluronic acid (HA) and chondroitin sulfate (CS) are recognized for their therapeutic potential in OA, their effects on extracellular matrix (ECM) degradation are not well understood. This study investigates the impact of HA and CS, individually and combined, on ECM degradation in OA and the underlying mechanisms.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Emergency, The First Hospital of China Medical University, No.155 Nanjing Road, Heping District, Shenyang, 110001, Liaoning Province, P. R. China.
In this study, we identified cancer-associated fibroblast (CAF) molecular subtypes and developed a CAF-based prognostic model for breast cancer (BRCA). The heterogeneity of cancer-associated fibroblasts (CAFs) and their significant involvement in the advancement of BRCA were discovered employing single-cell RNA sequencing. Notably, we discovered that the RUNX1/SDC1 axis enhances BRCA cell invasion and metastasis.
View Article and Find Full Text PDFAnal Chem
January 2025
Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, United States.
Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) has been used to generate spatial maps of lipids, metabolites, peptides, proteins, and glycans in tissues; however, its use for mapping extracellular matrix (ECM) protein distributions is underexplored. ECM proteins play a major role in various pathological conditions, and changes in their spatial distributions affect the function and morphology of cells within tissues. ECM protein detection is challenging because they are large, insoluble, and undergo various post-translational modifications, such as glycosylation.
View Article and Find Full Text PDFJ Neurosci
January 2025
Institute of Neuroimmunology, Slovak Academy of Science, 84510 Bratislava, Slovakia.
Extracellular matrix (ECM) is a network of macromolecules which has two forms - perineuronal nets (PNNs) and a diffuse ECM (dECM) - both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility.
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.
Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!