Variable region-containing chitin-binding proteins (VCBPs) are secreted, immune-type molecules that have been described in both amphioxus, a cephalochordate, and sea squirt, Ciona intestinalis, a urochordate. In adult Ciona, VCBP-A, -B and -C are expressed in hemocytes and the cells of the gastrointestinal tract. VCBP-C binds bacteria in the stomach lumen and functions as an opsonin in vitro. In the present paper the expression of VCBPs has been characterized during development using in situ hybridization, immunohistochemical staining and quantitative polymerase chain reaction (qPCR) technologies. The expression of VCBP-A and -C is detected first in discrete areas of larva endoderm and becomes progressively localized during differentiation in the stomach and intestine, marking the development of gut tracts. In "small adults" (1-2 cm juveniles) expression of VCBP-C persists and VCBP-A gradually diminishes, ultimately replaced by expression of VCBP-B. The expression of VCBP-A and -C in stage 7-8 juveniles, at which point animals have already started feeding, is influenced significantly by challenge with either Gram-positive or -negative bacteria. A potential role for VCBPs in gut-microbiota interactions and homeostasis is indicated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4008424PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0094984PLOS

Publication Analysis

Top Keywords

ciona intestinalis
8
variable region-containing
8
region-containing chitin-binding
8
chitin-binding proteins
8
gastrointestinal tract
8
expression vcbp-a
8
expression
6
expression ciona
4
intestinalis variable
4
proteins development
4

Similar Publications

Animals must avoid adhesion to objects in the environment to maintain their mobility and independence. The marine invertebrate chordate ascidians are characterized by an acellular matrix tunic enveloping their entire body for protection and swimming. The tunic of ascidian larvae consists of a surface cuticle layer and inner matrix layer.

View Article and Find Full Text PDF

Despite known single-cell expression profiles in vertebrate retinas, understanding of their developmental and evolutionary expression patterns among homologous cell classes remains limited. We examined and compared approximately 240 000 retinal cells from four species and found significant similarities among homologous cell classes, indicating inherent regulatory patterns. To understand these shared patterns, we constructed gene regulatory networks for each developmental stage for three of these species.

View Article and Find Full Text PDF

Neural crest cells are multipotent progenitors that produce defining features of vertebrates such as the 'new head'. Here we use the tunicate, Ciona, to explore the evolutionary origins of neural crest since this invertebrate chordate is among the closest living relatives of vertebrates. Previous studies identified two potential neural crest cell types in Ciona, sensory pigment cells and bipolar tail neurons.

View Article and Find Full Text PDF

Alternative oxidase (AOX) is an enzyme that transfers electrons from reduced quinone directly to oxygen without proton translocation. When AOX from Ciona intestinalis is xenotopically expressed in mice, it can substitute the combined electron-transferring activity of mitochondrial complexes III/IV. Here, we used brain mitochondria from AOX-expressing mice with such a chimeric respiratory chain to study respiratory control bioenergetic mechanisms.

View Article and Find Full Text PDF

Natural sea water and artificial sea water are not equivalent in plastic leachate contamination studies.

Open Res Eur

October 2024

Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Campania, Italy.

Background: Plastic contamination is one of the concerns of our age. With more than 150 million tons of plastic floating in the oceans, and a further 8 million tons arriving to the water each year, in recent times the scientific community has been studying the effects these plastics have on sea life both in the field and with experimental approaches. Laboratory based studies have been using both natural sea water and artificial sea water for testing various aspects of plastic contamination, including the study of chemicals leached from the plastic particles to the water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!