The E3 ubiquitin ligase HRD1 is found in the endoplasmic reticulum membrane of brain neurons and is involved in endoplasmic reticulum-associated degradation. We previously demonstrated that suppression of HRD1 expression in neurons causes accumulation of amyloid precursor protein, resulting in amyloid β production associated with endoplasmic reticulum stress and apoptosis. Furthermore, HRD1 levels are significantly decreased in the cerebral cortex of Alzheimer's disease patients because of its insolubility. The mechanisms that affect HRD1 solubility are not well understood. We here show that HRD1 protein was insolubilized by oxidative stress but not by other Alzheimer's disease-related molecules and stressors, such as amyloid β, tau, and endoplasmic reticulum stress. Furthermore, we raise the possibility that modifications of HRD1 by 4-hydroxy-2-nonenal, an oxidative stress marker, decrease HRD1 protein solubility and the oxidative stress led to the accumulation of HRD1 into the aggresome. Thus, oxidative stress-induced HRD1 insolubilization might be involved in a vicious cycle of increased amyloid β production and amyloid β-induced oxidative stress in Alzheimer's disease pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006799PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0094576PLOS

Publication Analysis

Top Keywords

oxidative stress
20
alzheimer's disease
12
endoplasmic reticulum
12
hrd1
10
ubiquitin ligase
8
amyloid production
8
reticulum stress
8
hrd1 protein
8
stress alzheimer's
8
stress
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!