The incidence of osteoporotic fractures increases as our population ages. Until now, the exact biochemical processes that occur during the healing of metaphyseal fractures remain unclear. Diagnostic instruments that allow a dynamic insight into the fracture healing process are as yet unavailable. In the present matched pair analysis, we study the time course of the osteoanabolic markers bone specific alkaline phosphatase (BAP) and transforming growth factor β1 (TGFβ1), as well as the osteocatabolic markers crosslinked C-telopeptide of type-I-collagen (β-CTX) and serum band 5 tartrate-resistant acid phosphatase (TRAP5b), during the healing of fractures that have a low level of bone mineral density (BMD) compared with fractures that have a normal BMD. Between March 2007 and February 2009, 30 patients aged older than 50 years who suffered a metaphyseal fracture were included in our study. BMDs were verified by dual energy Xray absorptiometry (DXEA) scans. The levels of BTMs were examined over an 8-week period. Osteoanabolic BAP levels in those with low levels of BMD were significantly different from the BAP levels in those with normal BMD. BAP levels in the former group increased constantly, whereas the latter group showed an initial strong decrease in BAP followed by slowly rising values. Osteocatabolic β-CTX increased in the bone of the normal BMD group constantly, whereas these levels decreased significantly in the bone of the group with low BMD from the first week. TRAP5b was significantly reduced in the low level BMD group. With this work, we conduct first insights into the molecular biology of the fracture healing process in patients with low levels of BMD that explains the mechanism of its fracture healing. The results may be one reason for the reduced healing qualities in bones with low BMD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006874 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0096058 | PLOS |
Fracture-related infection (FRI) is a serious complication that occurs primarily in surgically treated fractures. FRIs occur when bacteria enter the site of bony injury and alter the healing inflammatory response within the bone. This can prevent bone regeneration and can lead to long-lasting complications such as chronic infection, pain, nonunion, and amputation.
View Article and Find Full Text PDFCureus
December 2024
Department of Orthopedic Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, USA.
This review examines intrinsic and extrinsic augmentation techniques for uniting hand and upper extremity fractures, including bone morphogenic proteins (BMPs), platelet-rich plasma (PRP), low-intensity pulsed ultrasound (LIPUS), and pulsed electromagnetic fields (PEMF). While BMPs, PRP, LIPUS, and PEMF show potential in accelerating bone healing and reducing nonunion rates, their clinical adoption is limited by high costs and inconsistent results. This paper focuses on understanding the efficacy of these techniques, their drawbacks, and potential next steps for the field.
View Article and Find Full Text PDFBMC Musculoskelet Disord
January 2025
Department of Orthopaedics Surgery, National Children's Medical Center & Children's Hospital of Fudan University, Wanyuan Road 399, Minhang District, Shanghai, 201102, China.
Background: Congenital Pseudarthrosis of the Tibia (CPT) is a rare pediatric condition presenting substantial challenges for orthopedic surgeons. Aiming to achieve bone union, with subsequent complications such as refractures being common. The aim of the present study is to evaluate the results of our intentional cross-union protocol and to compare these outcomes with those obtained from our previously used techniques.
View Article and Find Full Text PDFJ Shoulder Elbow Surg
December 2024
Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Background: Many unicameral bone cysts (UBC) can be resolved or treated conservatively. Managing persistent symptomatic UBCs in the humerus is particularly challenging. An effective surgical method with low complications is significant for treatment.
View Article and Find Full Text PDFSci Adv
January 2025
Institute for Biomechanics, ETH Zürich, Zürich, Switzerland.
In recent decades, the field of bone mechanobiology has sought experimental techniques to unravel the molecular mechanisms governing the phenomenon of mechanically regulated fracture healing. Each cell within a fracture site resides within different local microenvironments characterized by different levels of mechanical strain; thus, preserving the spatial location of each cell is critical in relating cellular responses to mechanical stimuli. Our spatial transcriptomics-based "mechanomics" platform facilitates spatially resolved analysis of the molecular profiles of cells with respect to their local in vivo mechanical environment by integrating time-lapsed in vivo micro-computed tomography, spatial transcriptomics, and micro-finite element analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!