Baroreflex dysfunction, oxidative stress and inflammation, important hallmarks of hypertension, are attenuated by exercise training. In this study, we investigated the relationships and time-course changes of cardiovascular parameters, pro-inflammatory cytokines and pro-oxidant profiles within the hypothalamic paraventricular nucleus of the spontaneously hypertensive rats (SHR). Basal values and variability of arterial pressure and heart rate and baroreflex sensitivity were measured in trained (T, low-intensity treadmill training) and sedentary (S) SHR at weeks 0, 1, 2, 4 and 8. Paraventricular nucleus was used to determine reactive oxygen species (dihydroethidium oxidation products, HPLC), NADPH oxidase subunits and pro-inflammatory cytokines expression (Real time PCR), p38 MAPK and ERK1/2 expression (Western blotting), NF-κB content (electrophoretic mobility shift assay) and cytokines immunofluorescence. SHR-S vs. WKY-S (Wistar Kyoto rats as time control) showed increased mean arterial pressure (172±3 mmHg), pressure variability and heart rate (358±7 b/min), decreased baroreflex sensitivity and heart rate variability, increased p47phox and reactive oxygen species production, elevated NF-κB activity and increased TNF-α and IL-6 expression within the paraventricular nucleus of hypothalamus. Two weeks of training reversed all hypothalamic changes, reduced ERK1/2 phosphorylation and normalized baroreflex sensitivity (4.04±0.31 vs. 2.31±0.19 b/min/mmHg in SHR-S). These responses were followed by increased vagal component of heart rate variability (1.9-fold) and resting bradycardia (-13%) at the 4th week, and, by reduced vasomotor component of pressure variability (-28%) and decreased mean arterial pressure (-7%) only at the 8th week of training. Our findings indicate that independent of the high pressure levels in SHR, training promptly restores baroreflex function by disrupting the positive feedback between high oxidative stress and increased pro-inflammatory cytokines secretion within the hypothalamic paraventricular nucleus. These early adaptive responses precede the occurrence of training-induced resting bradycardia and blood pressure fall.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006803 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0094927 | PLOS |
Front Sports Act Living
December 2024
Geriatric Medicine Research, Dalhousie University & Nova Scotia Health, Halifax, NS, Canada.
Engaging in muscle strengthening activities (e.g., resistance training) at least twice/week is promoted by (Inter)national movement guidelines.
View Article and Find Full Text PDFJ Physiol
December 2024
Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
Loss of cardiac physiological function following myocardial infarction (MI) is accompanied by neural adaptations in the baroreflex that are compensatory in the short term, but then become associated with long-term disease progression. One marker of these adaptations is decreased baroreflex sensitivity, a strong predictor of post-MI mortality. The relative contributions of cardiac remodelling and neural adaptation in the sensory, central brainstem and peripheral ganglionic loci to baroreflex sensitivity changes remain underexplored.
View Article and Find Full Text PDFPLoS Comput Biol
December 2024
Sano Centre for Computational Medicine, Cracow, Poland.
The baroreflex is one of the most important control mechanisms in the human cardiovascular system. This work utilises a closed-loop in silico model of baroreflex regulation, coupled to pulsatile mechanical models with (i) one heart chamber and 36-parameters and (ii) four chambers and 51 parameters. We perform the first global sensitivity analysis of these closed-loop systems which considers both cardiovascular and baroreflex parameters, and compare the models with their respective unregulated equivalents.
View Article and Find Full Text PDFActa Neurochir (Wien)
December 2024
Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke Hospital, University of Cambridge, Cambridge, UK.
Background: Traumatic brain injury (TBI) can significantly disrupt autonomic nervous system (ANS) regulation, increasing the risk for secondary complications, hemodynamic instability, and adverse outcome. This retrospective study evaluated windowed time-lagged cross-correlation (WTLCC) matrices for describing cerebral hemodynamics-ANS interactions to predict outcome, enabling identifying high-risk patients who may benefit from enhanced monitoring to prevent complications.
Methods: The first experiment aimed to predict short-term outcome using WTLCC-based convolution neural network models on the Wroclaw University Hospital (WUH) database (P = 31 with 1,079 matrices, P = 16 with 573 matrices).
J Electrocardiol
November 2024
Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America.
Neurocardiology is a broad interdisciplinary specialty investigating how the cardiovascular and nervous systems interact. In this brief introductory review, we describe several key aspects of this interaction with specific attention to cardiovascular effects. The review introduces basic anatomy and discusses physiological mechanisms and effects that play crucial roles in the interaction of the cardiovascular and nervous systems, namely: the cardiac neuraxis, the taxonomy of the nervous system, integration of sensory input in the brainstem, influences of the autonomic nervous system (ANS) on heart and vasculature, the neural pathways and functioning of the arterial baroreflex, receptors and ANS effects in the walls of blood vessels, receptors and ANS effects in excitable cells in the heart, ANS effects on heart rate and sympathovagal balance, endo-epicardial inhomogeneity, ANS effects with a balanced vagal and sympathetic stimulation, sympathovagal interaction, arterial baroreflex, baroreflex sensitivity and heart rate variability, arrhythmias and the arterial baroreflex, the cardiopulmonary baroreflex, the exercise pressor reflex, exercise-recovery hysteresis, mental stress, cardiac-cardiac reflexes, the cardiac sympathetic afferent reflex (CSAR), and neuromodulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!