DDX6 (Rck/p54), a member of the DEAD-box family of helicases, is highly conserved from unicellular eukaryotes to vertebrates. Functions of DDX6 and its orthologs in dynamic ribonucleoproteins contribute to global and transcript-specific messenger RNA (mRNA) storage, translational repression, and decay during development and differentiation in the germline and somatic cells. Its role in pathways that promote mRNA-specific alternative translation initiation has been shown to be linked to cellular homeostasis, deregulated tissue development, and the control of gene expression in RNA viruses. Recently, DDX6 was found to participate in mRNA regulation mediated by miRNA-mediated silencing. DDX6 and its orthologs have versatile functions in mRNA metabolism, which characterize them as important post-transcriptional regulators of gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/wrna.1237 | DOI Listing |
Elife
July 2024
Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany.
Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells.
View Article and Find Full Text PDFCurr Biol
January 2022
Department of Biology, Indiana University, Bloomington, IN 47405, USA. Electronic address:
The role of processing bodies (P-bodies), key sites of post-transcriptional control, in adult stem cells remains poorly understood. Here, we report that adult Drosophila intestinal stem cells, but not surrounding differentiated cells such as absorptive enterocytes (ECs), harbor P-bodies that contain Drosophila orthologs of mammalian P-body components DDX6, EDC3, EDC4, and LSM14A/B. A targeted RNAi screen in intestinal progenitor cells identified 39 previously known and 64 novel P-body regulators, including Patr-1, a gene necessary for P-body assembly.
View Article and Find Full Text PDFNat Commun
February 2021
Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France.
Uridylation is a widespread modification destabilizing eukaryotic mRNAs. Yet, molecular mechanisms underlying TUTase-mediated mRNA degradation remain mostly unresolved. Here, we report that the Arabidopsis TUTase URT1 participates in a molecular network connecting several translational repressors/decapping activators.
View Article and Find Full Text PDFInsects
January 2021
Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China.
DEAD-box protein 6 (DDX6) is a member of the DDX RNA helicase family that exists in all eukaryotes. It has been extensively studied in yeast and mammals and has been shown to be involved in messenger ribonucleoprotein assembly, mRNA storage, and decay, as well as in miRNA-mediated gene silencing. DDX6 participates in many developmental processes but the biological function of DDX6 in insects has not yet been adequately addressed.
View Article and Find Full Text PDFPLoS Genet
April 2016
Department of Biological Chemistry, University of California, Irvine, Irvine, California, United States of America; Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California, United States of America.
Retrotransposition of the budding yeast long terminal repeat retrotransposon Ty3 is activated during mating. In this study, proteins that associate with Ty3 Gag3 capsid protein during virus-like particle (VLP) assembly were identified by mass spectrometry and screened for roles in mating-stimulated retrotransposition. Components of RNA processing bodies including DEAD box helicases Dhh1/DDX6 and Ded1/DDX3, Sm-like protein Lsm1, decapping protein Dcp2, and 5' to 3' exonuclease Xrn1 were among the proteins identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!