An emerging challenge for nanoscale measurements is to capture and quantify the magnitude of structural changes in response to environmental changes. Certain environmental parameters can affect the nanoscale morphology of samples, such as changing the pH, solvent polarity, ionic strength, and temperature. We prepared test platforms of n-octadecyltrichlorosilane ring nanostructures to study surface morphology changes at the nanoscale in selected liquid media compared to dry conditions in air. Particle lithography combined with organosilane vapor deposition was used to fabricate nanostructures of regular dimensions. Multilayer nanostructures of OTS were used as a test platform for scanning probe studies of solvent-responsive properties where the sides of designed ring structures expose a 3D interface for studying the interaction of solvents with molecular side groups. In dry, ambient conditions, nanostructures of OTS were first imaged using contact mode atomic force microscopy (AFM). Next, ethanol or buffer was introduced to the sample cell, and images were acquired using the same probe. We observed substantial changes in the lateral and vertical dimensions of the ring nanostructures in AFM topography frames; the sizes of the rings were observed to swell by tens of nanometers. Even after heat treatment of samples to promote cross-linking, the samples still evidenced swelling in liquid media. This research will have consequences for studies of the properties of nanomaterials, such as solvent-responsive organic films and polymers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la500799u | DOI Listing |
Macromolecules
January 2025
Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States.
Polyelectrolyte complexes (PECs) have attracted considerable attention owing to their unique physicochemical properties and potential applications as smart materials. Herein, the glass transitions of PECs solvated with varying alcohols are investigated in poly(diallyldimethylammonium)/poly(acrylic acid) (PDADMA/PAA) complexes by using modulated differential scanning calorimetry (MDSC). Solvents with one or two hydroxyl groups are selected to examine the effect of PAA-solvent interactions on the glass transition temperature ( ).
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
Inorg Chem
November 2024
Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan, Shandong Province 250100, China.
ACS Nano
June 2024
State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
Natural bouligand structures enable crustacean exoskeletons and fruits to strike a combination of exceptional mechanical robustness and brilliant chiroptical properties owing to multiscale structural hierarchy. However, integrating such a high strength-stiffness-toughness combination and photonic functionalities into synthetic hydrogels still remains a grand challenge. In this work, we report a simple yet general biomimetic strategy to construct an ultrarobust chiroptical hydrogel by closely mimicking the natural bouligand structure at multilength scale.
View Article and Find Full Text PDFChemistry
June 2024
Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
In this study, a series of H-bonded arylamide foldamers bearing benzoselenadiazole ends with solvent-responsive properties have been synthesized. In dichloromethane or dimethyl sulfoxide solvents, the molecules exhibit meniscus or linear structures, respectively, which can be attributed to the unique intramolecular hydrogen bonding behavior evidenced by 1D H NMR and 2D NOESY spectra. UV-vis spectroscopy experiments show that the absorption wavelength of H-bonded arylamide foldamers are significantly red-shifted due to the presence of benzoselenadiazole group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!