60Bi(2)O(3)-20B(2)O(3)-10SiO(2)-10Ga(2)O(3) glasses doped with 1-9 mol% Yb(2)O(3) were prepared and investigated mainly on their violet-green excitation for the typical NIR emission of Yb(3+), generally excited in the NIR. Two violet excitation bands at 365 nm and 405 nm are related to Yb(2+) and Bi(3+). 465 nm excitation band and 480 nm absorption band in the blue-green are assigned to Bi(0) metal nanoparticles/grains. Yb-content-dependence of the excitation and absorption means that Bi(0) is the reduced product of Bi(3+), but greatly competed by the redox reaction of Yb(2+) ↔ Yb(3+). It is proved that the violet-green excitations result in the NIR emission of Yb(3+). On the energy transfer, the virtual level of Yb(3+)-Yb(3+) as well as Bi(0) dimers probably plays an important role. An effective and controllable way is suggested to achieve nano-optical applications by Bi(0) metal nanoparticles/grains and Yb(3+).

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.008831DOI Listing

Publication Analysis

Top Keywords

violet-green excitation
8
nir emission
8
emission yb3+
8
bi0 metal
8
metal nanoparticles/grains
8
yb3+
5
nir
4
excitation nir
4
nir luminescence
4
luminescence yb3+
4

Similar Publications

Spectroscopic properties of Tb-doped and Tb-Ag codoped lithium tetraborate (LTB) glasses with LiBO (or LiO-2BO) composition are investigated and analysed using electron paramagnetic resonance (EPR), optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectra, PL decay kinetics and absolute quantum yield (QY) measurements. PL spectra of the investigated glasses show numerous narrow emission bands corresponding to the D → F (J = 6-0) and D → F (J = 5-3) transitions of Tb (4f) ions. The most intense PL band of Tb ions at 541 nm (D → F transition) is characterised by a lifetime slightly exceeding 2.

View Article and Find Full Text PDF

Large-Scale Mechanochemical Synthesis of Cesium Lanthanide Chloride for Radioluminescence.

Inorg Chem

September 2024

Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Republic of Korea.

Cesium lanthanide chloride (CsLnCl), a recently developed class of lanthanide-based zero-dimensional metal halides, has garnered a significant amount of interest because of its potential applications in scintillators, light-emitting diodes, and photodetectors. Although cesium lanthanide chloride demonstrates exceptional scintillator properties, conventional synthesis methods involving solid-state and solution-phase techniques are complex and limited on the reaction scale. This study presents a facile mechanochemical synthesis method for producing CsCeCl, CsTbCl, and CsEuCl metal halides on a 5 g scale.

View Article and Find Full Text PDF

Two new polythioamides were prepared through the polycondensation reaction between thiourea monomers and terephthaloyl dichloride, while the thiourea monomers were synthesized by the interaction of aromatic (4,4'-diaminophenylsulfone) or alicyclic (1,2-cyclohexanediamine) diamine with ammonium thiocyanate. The elemental composition of polythioamides was confirmed through CHN microanalysis. The structure and properties of thiourea monomers and polythioamides were determined through proton NMR, UV-Vis, FT-IR spectroscopy, fluorescence, TGA/DTA and SEM.

View Article and Find Full Text PDF

60Bi(2)O(3)-20B(2)O(3)-10SiO(2)-10Ga(2)O(3) glasses doped with 1-9 mol% Yb(2)O(3) were prepared and investigated mainly on their violet-green excitation for the typical NIR emission of Yb(3+), generally excited in the NIR. Two violet excitation bands at 365 nm and 405 nm are related to Yb(2+) and Bi(3+). 465 nm excitation band and 480 nm absorption band in the blue-green are assigned to Bi(0) metal nanoparticles/grains.

View Article and Find Full Text PDF

Highly thermally stable single-component white-emitting silicate glass for organic-resin-free white-light-emitting diodes.

ACS Appl Mater Interfaces

February 2014

Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China.

Thermal management is still a great challenge for high-power phosphor-converted white-light-emitting diodes (pc-WLEDs) intended for future general lighting. In this paper, a series of single-component white-emitting silicate SiO2-Li2O-SrO-Al2O3-K2O-P2O5: Ce(3+), Tb(3+), Mn(2+) (SLSAKP: Ce(3+), Tb(3+), Mn(2+)) glasses that simultaneously play key roles as a luminescent convertor and an encapsulating material for WLEDs were prepared via the conventional melt-quenching method, and systematically studied using their absorption spectra, transmittance spectra, photoluminescence excitation and emission spectra in the temperature range 296-498 K, decay curves, and quantum efficiency. The glasses show strong and broad absorption in 250-380 nm region and exhibit intense white emission, produced by in situ mixing of blue-violet, green, and orange-red light from Ce(3+), Tb(3+), and Mn(2+) ions, respectively, in a single glass component.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!