NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1-6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12-US21; a genetic arrangement, which is suggestive of an 'accordion' expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006889 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1004058 | DOI Listing |
EMBO Rep
March 2024
Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
Herpesviruses modulate immune control to secure lifelong infection. The mechanisms Human Cytomegalovirus (HCMV) employs in this regard can reveal unanticipated aspects of cellular signaling involved in antiviral immunity. Here, we describe a novel relationship between the TGF-β family cytokine BMP9 and HCMV infection.
View Article and Find Full Text PDFJ Med Chem
September 2021
Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States.
Mitochondrial fragmentation from defective fusion or unopposed fission contributes to many neurodegenerative diseases. Small molecule mitofusin activators reverse mitochondrial fragmentation , promising a novel therapeutic approach. The first-in-class mitofusin activator, , has a short plasma and limited neurological system bioavailability, conferring "burst activation".
View Article and Find Full Text PDFPLoS One
January 2021
Genetics Research LLC, Waltham, Massachusetts, United States of America.
The programmable sequence specificity of CRISPR has found uses in gene editing and diagnostics. This manuscript describes an additional application of CRISPR through a family of novel DNA enrichment technologies. CAMP (CRISPR Associated Multiplexed PCR) and cCAMP (chimeric CRISPR Associated Multiplexed PCR) utilize the sequence specificity of the Cas9/sgRNA complex to target loci for the ligation of a universal adapter that is used for subsequent amplification.
View Article and Find Full Text PDFJ Cyst Fibros
May 2021
Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana IL, USA; Arnold and Mabel Beckman Institute, University of Illinois at Urbana-Champaign, Urbana IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana IL, USA. Electronic address:
Background: Approximately 10% of people with cystic fibrosis (CF) have mutations that result in little to no CFTR production and thus cannot benefit from CFTR modulators. We previously found that Amphotericin B (AmB), a small molecule that forms anion channels, restored HCO secretion and increased host defenses in primary cultures of CF airway epithelia. Further, AmB increased ASL pH in CFTR-null pigs, suggesting an alternative CFTR-independent approach to achieve gain-of-function.
View Article and Find Full Text PDFSci Rep
August 2017
The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel.
Human cytomegalovirus (HCMV) is a major human pathogen, causing serious diseases in immunocompromised populations and congenially infected neonates. One of the main immune cells acting against the virus are Natural Killer (NK) cells. Killing by NK cells is mediated by a small family of activating receptors such as NKp30 that interact with the cellular ligand B7-H6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!