Complement deficiencies limit CD20 monoclonal antibody treatment efficacy in CLL.

Leukemia

Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.

Published: January 2015

Monoclonal antibodies (MAbs) form a central part of chronic lymphocytic leukaemia (CLL) treatment. We therefore evaluated whether complement defects in CLL patients reduced the induction of complement-dependent cytotoxicity (CDC) by using anti-CD20 MAbs rituximab (RTX) and ofatumumab (OFA). Ofatumumab elicited higher CDC levels than RTX in all CLL samples examined, particularly in poor prognosis cohorts (11q- and 17p-). Serum sample analyses revealed that 38.1% of patients were deficient in one or more complement components, correlating with reduced CDC responses. Although a proportion of patients with deficient complement levels initially induced high levels of CDC, on secondary challenge CDC activity in sera was significantly reduced, compared with that in normal human serum (NHS; P<0.01; n=52). In addition, a high CLL cell number contributed to rapid complement exhaustion. Supplementing CLL serum with NHS or individual complement components, particularly C2, restored CDC on secondary challenge to NHS levels (P<0.0001; n=9). In vivo studies revealed that complement components were exhausted in CLL patient sera post RTX treatment, correlating with an inability to elicit CDC. Supplementing MAb treatment with fresh-frozen plasma may therefore maintain CDC levels in CLL patients with a complement deficiency or high white blood cell count. This study has important implications for CLL patients receiving anti-CD20 MAb therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1038/leu.2014.146DOI Listing

Publication Analysis

Top Keywords

patients deficient
8
deficient complement
8
cdc
5
complement
4
complement deficiencies
4
deficiencies limit
4
limit cd20
4
cd20 monoclonal
4
monoclonal antibody
4
antibody treatment
4

Similar Publications

Background: An association exists between obesity and reduced testosterone levels in males. The propose of this research is to reveal the correlation between 15 indices linked to obesity and lipid levels with the concentration of serum testosterone, and incidence of testosterone deficiency (TD) among adult American men.

Methods: The study utilized information gathered from the National Health and Nutrition Examination Survey (NHANES) carried out from 2011 to 2016.

View Article and Find Full Text PDF

Background: Classic congenital adrenal hyperplasia, primarily due to 21-hydroxylase deficiency, leads to impaired cortisol and aldosterone production and excess adrenal androgens. Lifelong glucocorticoid therapy is required, often necessitating supraphysiological doses in youth to manage androgen excess and growth acceleration. These patients experience higher obesity rates, hypertension, and glucose metabolism issues, complicating long-term health management.

View Article and Find Full Text PDF

Background: Iron deficiency (ID) is the most common nutritional deficiency among patients undergoing major surgery. Treatment of ID is straightforward, however implementing a comprehensive anemia management strategy within clinical routines is complex. Recently, reticulocyte hemoglobin content (Ret-He) has been evaluated as an early marker for ID diagnosis.

View Article and Find Full Text PDF

Background: Arginine infusion stimulates copeptin secretion, a surrogate marker of arginine vasopressin (AVP), thereby serving as a diagnostic test in the differential diagnosis of suspected AVP deficiency (AVP-D). Yet, the precise mechanism underlying the stimulatory effect of arginine on the vasopressinergic system remains elusive. Arginine plays a significant role in the urea cycle and increases the production of urea.

View Article and Find Full Text PDF

Pseudogenization of the Slc23a4 gene is necessary for the survival of Xdh-deficient mice.

Sci Rep

January 2025

Laboratory of Human Physiology and Pathology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan.

In most patients with type 1 xanthinuria caused by mutations in the xanthine dehydrogenase gene (XDH), no clinical complications, except for urinary stones, are observed. In contrast, all Xdh(- / -) mice die due to renal failure before reaching adulthood at 8 weeks of age. Hypoxanthine or xanthine levels become excessive and thus toxic in Xdh(- / -) mice because enhancing the activity of hypoxanthine phosphoribosyl transferase (HPRT), which is an enzyme that uses hypoxanthine as a substrate, slightly increases the life span of these mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!