Thermoresponsive layer-by-layer assemblies for nanoparticle-based drug delivery.

Langmuir

Department of Materials Science and Engineering, Texas A&M University , College Station, Texas 77843-3003, United States.

Published: May 2014

Layer-by-layer (LbL) capsules, known for their versatility and smart response to environmental stimuli, have attracted great interest in drug delivery applications. However, achieving a desired drug delivery system with sustained and tunable drug release is still challenging. Here, a thermoresponsive drug delivery system of solid dexamethasone nanoparticles (DXM NPs, 200 ± 100 nm) encapsulated in a model LbL assembly of tunable thickness consisting of strong polyelectrolytes poly(diallyldimethylammonium chloride)/poly(styrenesulfonate) (PDAC/PSS) is constructed. The influence of various parameters on drug release, such as number of layers, ionic strength of the adsorption solution, temperature, and outermost layer, is investigated. Increasing the number of layers results in a thicker encapsulating nanoshell and decreases the rate of dexamethasone release. LbL assemblies created in the absence of salt are most responsive to temperature, yielding the greatest contrast in drug release. Relationships between drug release and LbL architecture are attributed to the size and concentration of free volume cavities within the assemblies. By tailoring the properties of those cavities, a thermoresponsive drug delivery system may be obtained. This work provides a promising example of how LbL assemblies may be implemented as temperature-gated materials for the controlled release of drug, thus providing an alternative approach to the delivery of therapeutics with reduced toxic effects.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la501047mDOI Listing

Publication Analysis

Top Keywords

drug delivery
20
drug release
16
delivery system
12
drug
10
thermoresponsive drug
8
number layers
8
release lbl
8
lbl assemblies
8
delivery
6
release
6

Similar Publications

Purpose: The positron range effect can impair PET image quality of Gallium-68 (Ga). A positron range correction (PRC) can be applied to reduce this effect. In this study, the effect of a tissue-independent PRC for Ga was investigated on patient data.

View Article and Find Full Text PDF

In this study, a novel inhibitor of ERCC1/XPF heterodimerization, A4, was used as an inhibitor of repair for DNA damage by platinum-based chemotherapeutics. Nano-formulations of A4 were developed, using self-assembly of the following block copolymers: methoxy-poly(ethylene oxide)-block-poly(α-benzyl carboxylate-ε-caprolactone) (PEO-b-PBCL), methoxy-poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL), or methoxy-poly(ethylene oxide)-block-poly (D, L, lactide) (PEO-b-PDLA 50-50). The nano-formulations were characterized for their average diameter, polydispersity, morphology, A4 encapsulation and in vitro release.

View Article and Find Full Text PDF

The global prevalence of Parkinson's Disease (PD) is on the rise, driven by an ageing population and ongoing environmental conditions. To gain a better understanding of PD pathogenesis, it is essential to consider its relationship with the ageing process, as ageing stands out as the most significant risk factor for this neurodegenerative condition. PD risk factors encompass genetic predisposition, exposure to environmental toxins, and lifestyle influences, collectively increasing the chance of PD development.

View Article and Find Full Text PDF

PD-L1/PD-1 checkpoint inhibitors (CPIs) are mainstream agents for cancer immunotherapy, but the prognosis is unsatisfactory in solid tumor patients lacking preexisting T-cell reactivity. Adjunct therapy strategies including the intratumoral administration of immunostimulants aim to address this limitation. CpG oligodeoxynucleotides (ODNs), TLR9 agonists that can potentiate adaptive immunity, have been widely investigated to tackle PD-L1/PD-1 resistance, but clinical success has been hindered by inconsistent efficacy and immune-related toxicities caused by systemic exposure.

View Article and Find Full Text PDF

Gold nanocomposites in colorectal cancer therapy: characterization, selective cytotoxicity, and migration inhibition.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia.

The third most prevalent type of cancer in the world, colorectal cancer, poses a significant treatment challenge due to the nonspecific distribution, low efficacy, and high systemic toxicity associated with chemotherapy. To overcome these limitations, a targeted drug delivery system with a high cytotoxicity against cancer cells while maintaining a minimal systemic side effects represents a promising therapeutic approach. Therefore, the aim of this study was to develop an efficient gold nanocarrier for the targeted delivery of the anticancer agent everolimus to Caco-2 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!