A compact polarization rotator (PR) for silicon-based slot waveguides is proposed, where the slot region including the upper claddings is filled with liquid crystals (LCs). With the anisotropic features of the LCs, the transverse field components of eigenmodes have almost identical amplitudes, leading to a high modal hybridness. As a result, the TE (TM) polarization can be rotated efficiently to the TM (TE) polarization within a short length. The numerical results show that a PR 11.3 μm in length at an operating wavelength of 1.55 μm is achieved with an extinction ratio (ER) (insertion loss) of 12.6 (0.22) dB for TE-to-TM and 11.5 (0.30) dB for TM-to-TE. Moreover, the optical bandwidth for TE-to-TM (TM-to-TE) mode must be ∼64(∼29) nm to keep the ER over 12 (10) dB. In addition, fabrication tolerances to the structural parameters are investigated, and field evolution along the propagation distance through the PR is also demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.53.002390 | DOI Listing |
Nanoscale
March 2025
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
The structural design of light-weight MXene-polymer composites has attracted significant interest for enhancing both electromagnetic interference (EMI) shielding performance and mechanical strength, which are critical for practical applications. However, a systematic understanding of how various structural configurations of MXene composites affect EMI shielding is lacking. In this study, light-weight TiCT-PVA composites were fabricated in three structural forms, hydrogel, aerogel, and compact film, while varying the TiCT areal density (14 to 20 mg cm) to elucidate the role of structural design in X-band EMI shielding and mechanical properties.
View Article and Find Full Text PDFPLoS One
March 2025
Medical Artificial Intelligence Laboratory, Division of Digital Healthcare, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju, Republic of Korea.
Portable and wearable electrocardiogram (ECG) devices are increasingly utilized in healthcare for monitoring heart rhythms and detecting cardiac arrhythmias or other heart conditions. The integration of ECG signal visualization with AI-based abnormality detection empowers users to independently and confidently assess their physiological signals. In this study, we investigated a novel method for visualizing ECG signals using polar transformations of short-time Fourier transform (STFT) spectrograms and evaluated the performance of deep convolutional neural networks (CNNs) in predicting atrial fibrillation from these polar transformed spectrograms.
View Article and Find Full Text PDFAdv Mater
March 2025
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
On-chip polarized photodetectors play a crucial role in advancing ultra-compact optoelectronic devices for next-generation technologies. However, simultaneously detecting the angle of linear polarization (AoLP) and the degree of linear polarization (DoLP) within a single device remains a challenging task, particularly due to the inherently weak polarization states found in naturally anisotropic materials. In this paper, it is reported on the development of a twisted monopole barrier photodetector based on a PdSe/MoS/PdSe configuration.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
Developing cost-effective and high-performance n-type thermoelectric (TE) materials is a significant challenge for their utilization in organic electronics. Clarifying the influence of molecular structure on TE properties is of utmost importance. In this work, the analysis on how the shape and polarity of organic molecules affect the thermoelectric performance of n-type composites based on single-walled carbon nanotubes (SWCNTs) is presented.
View Article and Find Full Text PDFSci Rep
March 2025
Faculty of Physics, University of Tabriz, Tabriz, 51666-16471, Iran.
Magneto-optical (MO) metamaterials are a new degree of freedom in the modern technologies due to their pivotal role in paving way for appealing applications. In this paper, a new type of metamaterial composed of plasma and ferrite layers is proposed, and based on the matrix method and numerical calculations is characterized. It is identified that plasma-ferrite metamaterial (PFMM) exhibits a significant MO response with large polarization rotation angles and ellipticities in both reflection and transmission geometries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.