Synthetic supercontainers exhibit distinct solution versus solid state guest-binding behavior.

J Am Chem Soc

Department of Chemistry, The University of South Dakota, Churchill-Haines Laboratories, Room 115, 414 East Clark Street, Vermillion, South Dakota 57069-2390, United States.

Published: May 2014

The phase-dependent host-guest binding behavior of a new family of synthetic supercontainers has been probed in homogeneous solution and at liquid-liquid, solid-liquid, and solid-gas interfaces. The synthetic hosts, namely, type II metal-organic supercontainers (MOSCs), are constructed from the assembly of divalent metal ions, 1,4-benzenedicarboxylate (BDC) linker, and sulfonylcalix[4]arene-based container precursors. One member of the MOSCs, MOSC-II-tBu-Ni, which is derived from Ni(II), BDC, and p-tert-butylsulfonylcalix[4]arene (TBSC), crystallizes in the space group R3 and adopts pseudo face-centered cubic (fcc) packing, whereas other MOSCs, including TBSC analogue MOSC-II-tBu-Co, p-tert-pentylsulfonylcalix[4]arene (TPSC) analogues MOSC-II-tPen-Ni/Co, and p-tert-octylsulfonylcalix[4]arene (TOSC) analogues MOSC-II-tOc-Ni/Mg/Co, all crystallize in the space group I4/m and assume a pseudo body-centered cubic (bcc) packing mode. This solid-state structural diversity is nevertheless not reflected in their solution host-guest chemistry, as evidenced by the similar binding properties of MOSC-II-tBu-Ni and MOSC-II-tBu-Co in solution. Both MOSCs show comparable binding constants and adsorb ca. 7 equiv of methylene blue (MB) and ca. 30 equiv of aspirin in chloroform. In contrast, the guest-binding behavior of the MOSCs in solid state reveals much more variations. At the solid-liquid interface, MOSC-II-tBu-Co adsorb ca. 5 equiv of MB from an aqueous solution at a substantially faster rate than MOSC-II-tBu-Ni does. However, at the solid-gas interface, MOSC-II-tBu-Ni has higher gas uptake than MOSC-II-tBu-Co, contradicting their overall porosity inferred from the crystal structures. This discrepancy is attributed to the partial collapse of the solid-state packing of the MOSCs upon solvent evacuation. It is postulated that the degree of porosity collapse correlates with the molecular size of the MOSCs, i.e., the larger the MOSCs, the more severe they suffer from the loss of porosity. The same principle can rationalize the negligible N2 and O2 adsorption seen in the larger MOSC-II-tPen-Co and MOSC-II-tOC-Ni/Mg/Co molecules. MOSC-II-tPen-Ni features an intermediate molecular size and endures a partial structural collapse in such a way that the resulting pore dimension permits the inclusion of kinetically smaller O2 (3.46 Å) but excludes larger N2 (3.64 Å), explaining the observed remarkable O2/N2 adsorption selectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja502839bDOI Listing

Publication Analysis

Top Keywords

synthetic supercontainers
8
solid state
8
guest-binding behavior
8
moscs
8
space group
8
packing moscs
8
adsorb equiv
8
molecular size
8
solution
5
supercontainers exhibit
4

Similar Publications

The cooperative binding behavior of a face-directed octahedral metal-organic supercontainer featuring one cavity and six cavities was thoroughly examined in chloroform solution through ultraviolet-visible (UV-Vis) titration technique using two representative drug molecules as the guests. The titration curves and their nonlinear fit to Hill equation strongly suggest the efficient encapsulation of the guest molecules by the synthetic host, which exhibit interesting cooperative and stepwise binding behavior. Based on the control experiments using tetranuclear complex as a reference, it is clear that two equivalents of the guest molecules are initially encapsulated inside the cavity, followed by the trapping of six additional equivalents of the drug molecules through six cavities (1 eq.

View Article and Find Full Text PDF

Stimuli-responsive metal-organic supercontainers as synthetic proton receptors.

Dalton Trans

July 2018

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

We demonstrate a proof-of-concept design of a new platform for proton recognition and modulation. The new proton receptors are derived from a unique class of synthetic supercontainers that exhibit exceptional proton binding capacity (over 50 equiv.) and intriguing proton-dependent fluorescent switching behavior.

View Article and Find Full Text PDF

Switching on Supramolecular Catalysis via Cavity Mediation and Electrostatic Regulation.

Angew Chem Int Ed Engl

October 2016

Department of Chemistry, University of South Dakota, 414 East Clark Street, Churchill-Haines Laboratories, Room 115, Vermillion, SD, 57069-2390, USA.

Synthetic supercontainers constructed from divalent metal ions, carboxylate linkers, and sulfonylcalix[4]arene-based container precursors exhibit great promise as enzyme mimics that function in organic solvents. The capacity of these artificial hosts to catalyze Knoevenagel condensation can be switched on when the aldehyde substrate possesses a molecular size and shape matching the nanocavity of the supercontainers. In contrast, little reactivity is observed for other aldehydes that do not match the binding pocket.

View Article and Find Full Text PDF

Synthetic supercontainers exhibit distinct solution versus solid state guest-binding behavior.

J Am Chem Soc

May 2014

Department of Chemistry, The University of South Dakota, Churchill-Haines Laboratories, Room 115, 414 East Clark Street, Vermillion, South Dakota 57069-2390, United States.

The phase-dependent host-guest binding behavior of a new family of synthetic supercontainers has been probed in homogeneous solution and at liquid-liquid, solid-liquid, and solid-gas interfaces. The synthetic hosts, namely, type II metal-organic supercontainers (MOSCs), are constructed from the assembly of divalent metal ions, 1,4-benzenedicarboxylate (BDC) linker, and sulfonylcalix[4]arene-based container precursors. One member of the MOSCs, MOSC-II-tBu-Ni, which is derived from Ni(II), BDC, and p-tert-butylsulfonylcalix[4]arene (TBSC), crystallizes in the space group R3 and adopts pseudo face-centered cubic (fcc) packing, whereas other MOSCs, including TBSC analogue MOSC-II-tBu-Co, p-tert-pentylsulfonylcalix[4]arene (TPSC) analogues MOSC-II-tPen-Ni/Co, and p-tert-octylsulfonylcalix[4]arene (TOSC) analogues MOSC-II-tOc-Ni/Mg/Co, all crystallize in the space group I4/m and assume a pseudo body-centered cubic (bcc) packing mode.

View Article and Find Full Text PDF

Modulating guest binding in sulfonylcalixarene-based metal-organic supercontainers.

Chem Commun (Camb)

May 2014

Department of Chemistry, University of South Dakota, Churchill-Haines Laboratories, Room 115, 414 East Clark Street, Vermillion, South Dakota 57069-2390, USA.

Metal-organic supercontainers (MOSCs) represent a new family of synthetic receptors derived from container precursors and featuring both endo and exo cavities. A neutral MOSC has been functionalized into an anionic container by incorporating sulfo groups. The anionic MOSC exhibits cavity-specific binding properties in both solid state and solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!