AI Article Synopsis

Article Abstract

This research presents the results of investigation of laser polarization fluorescence of biological layers (histological sections, cytological smears). The polarization structural properties of autofluorescent images of human biological tissues layers and fluids were found and investigated. A model describing the formation of polarizationally heterogeneous images of optically anisotropic biological layers is suggested. On this basis, the practical method of polarization-variable autofluorescence is analytically substantiated and experimentally tested. The efficiency of applying this method to various tasks of medical diagnostics is analyzed: objectification of histological conclusions, defining and differentiating of various forms of cancer (dysplasia--microinvasive cancer) of the cervix uteri, and forensic medical express-differentiation of cause of death. The objective criteria (statistical moments) of differentiation of autofluorescent images of histological sections of myocardium biopsy and endometrium and cytological smears of its mucous tunic are defined. The operational characteristics (sensitivity, specificity, accuracy) of this method are determined concerning the positions of probative medicine, and the clinical efficiency of the technique is demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.53.00B181DOI Listing

Publication Analysis

Top Keywords

laser polarization
8
optically anisotropic
8
anisotropic biological
8
biological tissues
8
biological layers
8
histological sections
8
cytological smears
8
autofluorescent images
8
polarization autofluorescence
4
autofluorescence endogenous
4

Similar Publications

Engineering Floquet Moiré Patterns for Scalable Photocurrents.

Nano Lett

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), X5000HUA Córdoba, Argentina.

While intense laser irradiation and moiré engineering have independently proven powerful for tuning material properties on demand in condensed matter physics, their combination remains unexplored. Here we exploit tilted laser illumination to create spatially modulated light-matter interactions, leading to two striking phenomena in graphene. First, using two lasers tilted along the same axis, we create a quasi-1D supercell hosting a network of Floquet topological states that generate controllable and scalable photocurrents spanning the entire irradiated region.

View Article and Find Full Text PDF

Danshensu enhances autophagy and reduces inflammation by downregulating TNF-α to inhibit the NF-κB signaling pathway in ischemic flaps.

Phytomedicine

January 2025

Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China, ; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China. Electronic address:

Background: The significant distal necrosis of the random-pattern skin flaps greatly restricts their clinical applications in flap transplantation. Previous studies have demonstrated the potential of danshensu (DSS) to alleviate ischemic tissue injury. However, no research to date has confirmed whether DSS can improve the survival of ischemic flaps.

View Article and Find Full Text PDF

In this Letter, we propose and experimentally validate a high-fidelity and adaptive forward-phase-based vibration sensing using a Wiener filter (WF). In commercial coherent digital subcarrier multiplexing (DSCM) systems under external cavity lasers (ECLs), frequency-domain pilot tones (FPTs) in subcarrier intervals are employed for dynamic frequency offset estimation (FOE), carrier phase estimation (CPE), and polarization demultiplexing. The phase estimated by the CPE module is processed with the WF to achieve high-fidelity extraction of the vibration-induced phase.

View Article and Find Full Text PDF

An intelligent controlled spatiotemporal mode-locked (STML) fiber laser based on a photonic lantern (PL) is proposed and experimentally demonstrated. A pair of in-house developed PLs is spliced into the cavity in a back-to-back structure. This PL-based structure functions as a mode multiplexer/demultiplexer to generate higher-order spatial modes.

View Article and Find Full Text PDF

A 1645 nm end-pumped dual-channel Er:YAG vector laser that could generate two cylindrical vector (CV) beams simultaneously with different polarization orders is demonstrated. The laser is designed in a two-arm structure, wherein each arm places a q-plate (QP) to introduce intra-cavity spin-orbital angular momentum conversion, leading to the oscillation of two various CV modes in two arms, and finally output along two directions, respectively. The favorable experimental results illustrate high power stability and polarization mode purity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!