In this paper we describe a new Mueller matrix (MM) microscope that generalizes and makes quantitative the polarized light microscopy technique. In this instrument all the elements of the MU are simultaneously determined from the analysis in the frequency domain of the time-dependent intensity of the light beam at every pixel of the camera. The variations in intensity are created by the two compensators continuously rotating at different angular frequencies. A typical measurement is completed in a little over one minute and it can be applied to any visible wavelength. Some examples are presented to demonstrate the capabilities of the instrument.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.53.002236DOI Listing

Publication Analysis

Top Keywords

mueller matrix
8
matrix microscope
8
microscope dual
4
dual continuous
4
continuous rotating
4
rotating compensator
4
compensator setup
4
setup digital
4
digital demodulation
4
demodulation paper
4

Similar Publications

Purpose: Pre-clinical studies have demonstrated direct influences of the autonomic nervous system (ANS) on the immune system. However, it remains unknown if connections between the peripheral ANS and immune system exist in humans and contribute to the development of chronic inflammatory disease. This study had three aims: 1.

View Article and Find Full Text PDF

The article describes a technique for digital holographic reconstruction of complex amplitude fields in diffuse blood facies using laser polarization-interference phase scanning to isolate a single scattered component of the object field. This method serves as the basis for developing algorithms for Mueller-matrix reconstruction of linear and circular birefringence parameters in the polycrystalline architectonics of blood facies. Statistical (central moments of the 1st-4th orders) and multifractal analyses (fractal dimension spectra) are applied to study the optical anisotropy maps of polycrystalline networks during blood dehydration.

View Article and Find Full Text PDF

Purpose: Diffusion magnetic resonance imaging (dMRI) quantitatively estimates brain microstructure, diffusion tractography being one clinically utilized framework. To advance such dMRI approaches, direct quantitative comparisons between microscale anisotropy and orientation are imperative. Complete backscattering Mueller matrix polarized light imaging (PLI) enables the imaging of thin and thick tissue specimens to acquire numerous optical metrics not possible through conventional transmission PLI methods.

View Article and Find Full Text PDF

The nanoscale chiral arrangement in a bicomponent organic material system comprising donor and acceptor small molecules is shown to depend on the thickness of a film that is responsive to chiral light in an optoelectronic device. In this bulk heterojunction, a previously unreported chiral bis(diketopyrrolopyrrole) derivative was combined with an achiral non-fullerene acceptor. The optical activity of the chiral compound is dramatically different in the pure material and the composite, showing how the electron acceptor influences the donor's arrangement compared with the pure molecule.

View Article and Find Full Text PDF

Polarimetry terahertz imaging of human breast cancer surgical specimens.

J Med Imaging (Bellingham)

November 2024

University of Arkansas, Department of Electrical Engineering and Computer Science, Fayetteville, Arkansas, United States.

Article Synopsis
  • The study focuses on using terahertz (THz) polarimetry imaging to enhance contrast between cancerous tissue and healthy tissue in human breast cancer specimens.
  • It utilizes multiple polarizations to capture how cancerous cells interact differently with THz electric fields compared to healthy cells, aiming for better image clarity.
  • Results show that cross-polarization signals are dependent on tissue orientation, revealing patterns that help differentiate between various tissue types, indicating THz polarimetry's potential for improved imaging in tumor analysis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!