JunB protects β-cells from lipotoxicity via the XBP1-AKT pathway.

Cell Death Differ

1] Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium [2] Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium.

Published: August 2014

Diets rich in saturated fats may contribute to the loss of pancreatic β-cells in type 2 diabetes. JunB, a member of the activating protein 1 (AP-1) transcription factor family, promotes β-cell survival and mediates part of the beneficial effects of GLP-1 agonists. In this study we interrogated the molecular mechanisms involved in JunB-mediated β-cell protection from lipotoxicity. The saturated fatty acid palmitate decreased JunB expression, and this loss may contribute to β-cell apoptosis, as overexpression of JunB protected cells from lipotoxicity. Array analysis of JunB-deficient β-cells identified a gene expression signature of a downregulated endoplasmic reticulum (ER) stress response and inhibited AKT signaling. JunB stimulates XBP1 expression via the transcription factor c/EBPδ during ER stress, and forced expression of XBP1s rescued the viability of JunB-deficient cells, constituting an important antiapoptotic mechanism. JunB silencing inhibited AKT activation and activated the proapoptotic Bcl-2 protein BAD via its dephosphorylation. BAD knockdown reversed lipotoxic β-cell death potentiated by JunB siRNA. Interestingly, XBP1s links JunB and AKT signaling as XBP1 knockdown also reduced AKT phosphorylation. GLP-1 agonists induced cAMP-dependent AKT phosphorylation leading to β-cell protection against palmitate-induced apoptosis. JunB and XBP1 knockdown or IRE1 inhibition decreased AKT activation by cAMP, leading to β-cell apoptosis. In conclusion, JunB modulates the β-cell ER stress response and AKT signaling via the induction of XBP1s. The activation of the JunB gene network and the crosstalk between the ER stress and AKT pathway constitute a crucial defense mechanism by which GLP-1 agonists protect against lipotoxic β-cell death. These findings elucidate novel β-cell-protective signal transduction in type 2 diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4085537PMC
http://dx.doi.org/10.1038/cdd.2014.53DOI Listing

Publication Analysis

Top Keywords

glp-1 agonists
12
akt signaling
12
junb
11
type diabetes
8
transcription factor
8
β-cell
8
β-cell protection
8
β-cell apoptosis
8
stress response
8
akt
8

Similar Publications

Background: Glucagon-like peptide-1 (GLP-1) is a crucial incretin hormone secreted by intestinal endocrine L cells. Given its pivotal physiological role, researchers have developed GLP-1 receptor agonists (GLP-1 RAs) through structural modifications. These analogues display pharmacological effects similar to those of GLP-1 but with augmented stability and are regarded as an effective means of regulating blood glucose levels in clinical practice.

View Article and Find Full Text PDF

Hunting for heroes: Brain neurons mediating GLP-1R agonists in obesity treatment.

Obes Med

December 2024

The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, MD Anderson Cancer Center & UTHealth Houston Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, Texas, 77030, USA.

Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RAs) have proven to be highly effective in reducing obesity across species and ages, gaining unmet popularity in clinical treatments against obesity. Although extensive research efforts have been made to explore how the brain regulates body weight homeostasis including the effect brought up by GLP-1 and its synthetic analogs GLP-1RAs, the identity of neurons and neural pathways that are responsible for the observed anti-obesity effect of GLP-1RAs remain largely elusive. Excitingly, three recent high-profile studies presented compelling evidence that each argues for the importance of GLP-1Rs in the dorsomedial hypothalamus, hindbrain, or lateral septum, respectively, in mediating the anti-obesity effect of GLP-1RAs.

View Article and Find Full Text PDF

In this emulated comparative effectiveness target trial of glucagon-like peptide 1 (GLP-1) receptor agonist, sodium-glucose cotransporter 2 (SGLT2) inhibitor, dipeptidyl peptidase 4 (DPP-4) inhibitor, and sulfonylurea therapy among adults with type 2 diabetes at moderate cardiovascular disease risk, sulfonylurea use was associated with a significantly higher risk of hypoglycemia requiring emergency department or hospital care than treatment with DPP-4 inhibitors, GLP-1 receptor agonists, or SGLT2 inhibitors. This consideration can guide the choice of glucose-lowering therapy in this highly prevalent patient population, in whom avoidance of hypoglycemia is important, yet among whom the risk of severe hypoglycemia has not been examined previously.

View Article and Find Full Text PDF

Aim: To describe the effects of Glucagon-like peptide-1 receptor agonists (GLP-1RA) in patients with familial partial lipodystrophy (FPLD) assessed in a real-life setting in a national reference network.

Patients And Methods: We retrospectively collected clinical and metabolic parameters in patients with FPLD in the French lipodystrophy reference network, who initiated GLP-1RA. Data were recorded before, at one-year (12 ± 6 months) and at the latest follow-up on GLP-1RA therapy (≥18 months).

View Article and Find Full Text PDF

Background: Metabolic syndrome represents a pancreatic ductal adenocarcinoma (PDAC) risk factor. Metabolic alterations favor PDAC onset, which occurs early upon dysmetabolism. Pancreatic neoplastic lesions evolve within a dense desmoplastic stroma, consisting in abundant extracellular matrix settled by cancer associated fibroblasts (CAFs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!