This protocol describes the use of the genetically encoded troponin C-based calcium indicator TN-XXL to chronically monitor the functional properties of single neocortical neurons in the mouse visual cortex. A cranial window is implanted over the brain of a mouse expressing TN-XXL in pyramidal neurons of the cerebral cortex. Several days later, the visual cortex is mapped and photographed to facilitate repeated imaging of the same region using two-photon microscopy. Initial two-photon imaging may be done ∼2 wk after the window is implanted. We show the application of this technique for long-term in vivo imaging of stimulus response properties. Beyond providing functional information, long-term imaging of TN-XXL-labeled neurons also enables the simultaneous monitoring of structural properties down to the level of single dendritic spines.

Download full-text PDF

Source
http://dx.doi.org/10.1101/pdb.prot081737DOI Listing

Publication Analysis

Top Keywords

visual cortex
12
neurons mouse
8
mouse visual
8
troponin c-based
8
window implanted
8
imaging
5
chronic calcium
4
calcium imaging
4
neurons
4
imaging neurons
4

Similar Publications

Background: To investigate the alterations in spontaneous brain activity and the similarities and differences between monocular deprivation amblyopia and binocular deprivation amblyopia.

Methods: Twenty children with binocular deprivation amblyopia, 26 children with monocular deprivation amblyopia and 20 healthy controls underwent resting-state functional magnetic resonance imaging. The evaluation of altered spontaneous brain activity was conducted using fractional amplitude of low-frequency fluctuations (fALFF).

View Article and Find Full Text PDF

Cross-validating the electrophysiological markers of early face categorization.

eNeuro

January 2025

Eye and Brain Mapping Laboratory (iBMLab), Department of Psychology, University of Fribourg, 1700 Fribourg, Switzerland

Human face categorization has been extensively studied using event-related potentials (ERPs), positing the N170 ERP component as a robust neural marker of face categorization. Recently, the fast periodic visual stimulation (FPVS) approach relying on steady-state visual evoked potentials (SSVEPs) has also been used to investigate face categorization. FPVS studies consistently report strong bilateral SSVEP face categorization responses over the occipito-temporal cortex, with a right hemispheric dominance, closely mirroring the N170 scalp topography.

View Article and Find Full Text PDF

An extensive dataset of spiking activity to reveal the syntax of the ventral stream.

Neuron

January 2025

Department of Vision & Cognition, Netherlands Institute for Neuroscience (KNAW), 1105 BA Amsterdam, the Netherlands; Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Department of Neurosurgery, Academic Medical Centre, Postbus 22660, 1100 DD Amsterdam, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France. Electronic address:

Visual neuroscience benefits from high-quality datasets with neuronal responses to many images. Several neuroimaging datasets have been published in recent years, but no comparable dataset with spiking activity exists. Here, we introduce the THINGS ventral stream spiking dataset (TVSD).

View Article and Find Full Text PDF

Prior work highlighted that procrastination and impulsivity shared a common neuroanatomical basis in the dorsolateral prefrontal cortex, implying a tight relationship between these traits. However, theorists hold that procrastination is motivated by avoiding aversiveness, while impulsivity is driven by approaching immediate pleasure. Hence, exploring the common and distinct neural basis underlying procrastination and impulsivity through functional neuroimaging becomes imperative.

View Article and Find Full Text PDF

Research on brain aging using resting-state functional magnetic resonance imaging (rs-fMRI) has typically focused on comparing "older" adults to younger adults. Importantly, these studies have often neglected the middle age group, which is also significantly impacted by brain aging, including by early changes in motor, memory, and cognitive functions. This study aims to address this limitation by examining the resting state networks in middle-aged adults via an exploratory whole-brain ROI-to-ROI analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!