This protocol describes the use of the genetically encoded troponin C-based calcium indicator TN-XXL to chronically monitor the functional properties of single neocortical neurons in the mouse visual cortex. A cranial window is implanted over the brain of a mouse expressing TN-XXL in pyramidal neurons of the cerebral cortex. Several days later, the visual cortex is mapped and photographed to facilitate repeated imaging of the same region using two-photon microscopy. Initial two-photon imaging may be done ∼2 wk after the window is implanted. We show the application of this technique for long-term in vivo imaging of stimulus response properties. Beyond providing functional information, long-term imaging of TN-XXL-labeled neurons also enables the simultaneous monitoring of structural properties down to the level of single dendritic spines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1101/pdb.prot081737 | DOI Listing |
Eur J Med Res
January 2025
Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Background: To investigate the alterations in spontaneous brain activity and the similarities and differences between monocular deprivation amblyopia and binocular deprivation amblyopia.
Methods: Twenty children with binocular deprivation amblyopia, 26 children with monocular deprivation amblyopia and 20 healthy controls underwent resting-state functional magnetic resonance imaging. The evaluation of altered spontaneous brain activity was conducted using fractional amplitude of low-frequency fluctuations (fALFF).
eNeuro
January 2025
Eye and Brain Mapping Laboratory (iBMLab), Department of Psychology, University of Fribourg, 1700 Fribourg, Switzerland
Human face categorization has been extensively studied using event-related potentials (ERPs), positing the N170 ERP component as a robust neural marker of face categorization. Recently, the fast periodic visual stimulation (FPVS) approach relying on steady-state visual evoked potentials (SSVEPs) has also been used to investigate face categorization. FPVS studies consistently report strong bilateral SSVEP face categorization responses over the occipito-temporal cortex, with a right hemispheric dominance, closely mirroring the N170 scalp topography.
View Article and Find Full Text PDFNeuron
January 2025
Department of Vision & Cognition, Netherlands Institute for Neuroscience (KNAW), 1105 BA Amsterdam, the Netherlands; Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Department of Neurosurgery, Academic Medical Centre, Postbus 22660, 1100 DD Amsterdam, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France. Electronic address:
Visual neuroscience benefits from high-quality datasets with neuronal responses to many images. Several neuroimaging datasets have been published in recent years, but no comparable dataset with spiking activity exists. Here, we introduce the THINGS ventral stream spiking dataset (TVSD).
View Article and Find Full Text PDFCereb Cortex
January 2025
Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China.
Prior work highlighted that procrastination and impulsivity shared a common neuroanatomical basis in the dorsolateral prefrontal cortex, implying a tight relationship between these traits. However, theorists hold that procrastination is motivated by avoiding aversiveness, while impulsivity is driven by approaching immediate pleasure. Hence, exploring the common and distinct neural basis underlying procrastination and impulsivity through functional neuroimaging becomes imperative.
View Article and Find Full Text PDFExp Neurobiol
December 2024
Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea.
Research on brain aging using resting-state functional magnetic resonance imaging (rs-fMRI) has typically focused on comparing "older" adults to younger adults. Importantly, these studies have often neglected the middle age group, which is also significantly impacted by brain aging, including by early changes in motor, memory, and cognitive functions. This study aims to address this limitation by examining the resting state networks in middle-aged adults via an exploratory whole-brain ROI-to-ROI analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!