Toll-interleukin-1 receptor (TIR)-encoding proteins represent one of the most important families of disease resistance genes in plants. Studies that have explored the functional details of these genes tended to focus on only a few limited groups; the origin and evolutionary history of these genes were therefore unclear. In this study, focusing on the four principal groups of TIR-encoding genes, we conducted an extensive genome-wide survey of 32 fully sequenced plant genomes and Expressed Sequence Tags (ESTs) from the gymnosperm Pinus taeda and explored the origins and evolution of these genes. Through the identification of the TIR-encoding genes, the analysis of chromosome positions, the identification and analysis of conserved motifs, and sequence alignment and phylogenetic reconstruction, our results showed that the genes of the TIR-X family (TXs) had an earlier origin and a wider distribution than the genes from the other three groups. TIR-encoding genes experienced large-scale gene duplications during evolution. A skeleton motif pattern of the TIR domain was present in all spermatophytes, and the genes with this skeleton pattern exhibited a conserved and independent evolutionary history in all spermatophytes, including monocots, that followed their gymnosperm origin. This study used comparative genomics to explore the origin and evolutionary history of the four main groups of TIR-encoding genes. Additionally, we unraveled the mechanism behind the uneven distribution of TIR-encoding genes in dicots and monocots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2014.04.060 | DOI Listing |
Gene
August 2014
Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Province Key Laboratory for Plant Ex Situ Conservation, Nanjing 210014, China. Electronic address:
Toll-interleukin-1 receptor (TIR)-encoding proteins represent one of the most important families of disease resistance genes in plants. Studies that have explored the functional details of these genes tended to focus on only a few limited groups; the origin and evolutionary history of these genes were therefore unclear. In this study, focusing on the four principal groups of TIR-encoding genes, we conducted an extensive genome-wide survey of 32 fully sequenced plant genomes and Expressed Sequence Tags (ESTs) from the gymnosperm Pinus taeda and explored the origins and evolution of these genes.
View Article and Find Full Text PDFCommun Integr Biol
July 2011
Department of Molecular Biomedical Research; Unit for Molecular Signal Transduction in Inflammation; VIB; Ghent, Belgium.
In our recent paper, we identified a TIR encoding gene, which is required for resistance against a broad range of necrotrophic fungi. Here we present this finding in a broader perspective and discuss the unique features of this gene which might explain its role as a general regulator of resistance responses against a class of pathogens that have previously not been associated to the classical resistance (R) gene type of defense.
View Article and Find Full Text PDFPlant Cell
August 2000
Cooperative Research Center for Plant Science, GPO Box 475, Canberra, ACT, 2601, Australia.
Multiple alleles controlling different gene-for-gene flax rust resistance specificities occur at the L locus of flax. At least three distinct regions can be recognized in the predicted protein products: the Toll/interleukin-1 receptor homology (TIR) region, a nucleotide binding site (NBS) region, and a leucine-rich repeat (LRR) region. Replacement of the TIR-encoding region of the L6 allele with the corresponding regions of L2 or LH by recombination changed the specificity of the allele from L6 to L7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!