Evaluation of a competitive enzyme-linked immunosorbent assay for measurements of soluble HLA-G protein.

Tissue Antigens

Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Copenhagen University Hospital (Roskilde) and Roskilde Hospital, Roskilde, Denmark.

Published: August 2014

AI Article Synopsis

  • The HLA-G molecule is crucial for immune regulation, particularly its isoforms HLA-G5 and soluble HLA-G1, which are essential for research and potential clinical use.
  • A novel competitive ELISA method was developed to measure these isoforms in biological fluids, showing high specificity and sensitivity.
  • The assay's effectiveness was validated through several tests, and it may be applicable in various fields such as reproductive health, organ transplantation, and cancer research.

Article Abstract

The human leukocyte antigen (HLA) class Ib molecule, HLA-G, has gained increased attention because of its assumed important role in immune regulation. The HLA-G protein exists in several soluble isoforms. Most important are the actively secreted HLA-G5 full-length isoform generated by alternative splicing retaining intron 4 with a premature stop codon, and the cleavage of full-length membrane-bound HLA-G1 from the cell surface, so-called soluble HLA-G1 (sHLA-G1). A specific and sensitive immunoassay for measurements of soluble HLA-G is mandatory for conceivable routine testing and research projects. We report a novel method, a competitive immunoassay, for measuring HLA-G5/sHLA-G1 in biological fluids. The sHLA-G immunoassay is based upon a competitive enzyme-linked immunosorbent assay (ELISA) principle. It includes a recombinant sHLA-G1 protein in complex with β2-microglobulin and a peptide as a standard, biotinylated recombinant sHLA-G1 as an indicator, and the MEM-G/9 anti-HLA-G monoclonal antibody (mAb) as the capture antibody. The specificity and sensitivity of the assay were evaluated. Testing with different recombinant HLA class I proteins and different anti-HLA class I mAbs showed that the sHLA-G immunoassay was highly specific. Optimal combinations of competitor sHLA-G1 and capture mAb concentrations were determined. Two versions of the assay were tested. One with a relatively wide dynamic range from 3.1 to 100.0 ng/ml, and another more sensitive version ranging from 1.6 to 12.5 ng/ml. An intra-assay coefficient of variation (CV) of 15.5% at 88 ng/ml and an inter-assay CV of 23.1% at 39 ng/ml were determined. An assay based on the competitive sHLA-G ELISA may be important for measurements of sHLA-G proteins in several conditions: assisted reproduction, organ transplantation, cancer, and certain pregnancy complications, both in research studies and possibly in the future also for clinical routine use.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tan.12357DOI Listing

Publication Analysis

Top Keywords

competitive enzyme-linked
8
enzyme-linked immunosorbent
8
immunosorbent assay
8
measurements soluble
8
soluble hla-g
8
hla-g protein
8
hla class
8
shla-g immunoassay
8
based competitive
8
recombinant shla-g1
8

Similar Publications

Development of an Enzyme-Linked Immunosorbent Assay Based on a Monoclonal Antibody for the Rapid Detection of Citrinin in Wine.

Foods

December 2024

Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.

The ingestion of food contaminated with citrinin (CIT) poses a variety of health risks to humans and animals. The immunogens (CIT-COOH-BSA, CIT-H-BSA) and detection antigen (CIT-COOH-OVA, CIT-H-OVA) were synthesised using the active ester method (-COOH) and formaldehyde addition method (-H). A hybridoma cell line (3G5) that secretes anti-CIT monoclonal antibodies (mAbs) was screened via CIT-H-BSA immunisation of mice, cell fusion, and ELISA screening technology.

View Article and Find Full Text PDF

Lateral flow immunoassay (LFIA) has the advantages of simplicity and rapidness, and is widely used for the rapid detection of pesticides and other analytes. However, small molecule compounds such as pesticides are often analyzed using competitive LFIA (CLFIA), whose sensitivity often does not meet the actual needs. In this study, a noncompetitive LFIA (NLFIA) for deltamethrin (DM) with high sensitivity was developed by using anti-immunocomplex peptides (AIcPs).

View Article and Find Full Text PDF

Preparation and application of porcine broadly neutralizing monoclonal antibodies in an immunoassay for efficiently detecting neutralizing antibodies against foot-and-mouth disease virus serotype O.

Microbiol Spectr

January 2025

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.

Neutralizing antibodies provide vital protection against foot-and-mouth disease virus (FMDV). The virus neutralization test (VNT) is a gold standard method for the detection of neutralizing antibodies. However, its application is limited due to the requirement for live virus and unsuitability for large-scale serological surveillance.

View Article and Find Full Text PDF

Challenges of BTV-Group Specific Serology Testing: No One Test Fits All.

Viruses

November 2024

The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, 5 Portarlington Road, East Geelong, VIC 3219, Australia.

A newly formatted enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies to bluetongue virus (BTV) was developed and validated for bovine and ovine sera and plasma. Validation of the new sandwich ELISA (sELISA) was achieved with 949 negative bovine and ovine sera from BTV endemic and non-endemic areas of Australia and 752 BTV positive (field and experimental) sera verified by VNT and/or PCR. The test diagnostic sensitivity (DSe) and diagnostic specificity (DSp) were 99.

View Article and Find Full Text PDF
Article Synopsis
  • SA-MCF is a serious disease in cattle caused by OvGHV2, with a global presence and potential reservoirs in wild boars.
  • Previous detection methods for MCF used a CI-ELISA based on a specific antigen, but this study tested a new indirect ELISA specific to OvGHV2 antibodies in dairy cattle from Southern Brazil.
  • The results showed that nearly 38% of farms had at least one seropositive cow, with intensified farming systems showing a significantly higher risk for seropositivity, suggesting a link between environmental factors and disease prevalence.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!