SIRT6 is an NAD(+)-dependent deacetylase with a role in the transcriptional control of metabolism and aging but also in genome stability and inflammation. Broad therapeutic applications are foreseen for SIRT6 inhibitors, including uses in diabetes, immune-mediated disorders, and cancer. Here we report on the identification of the first selective SIRT6 inhibitors by in silico screening. The most promising leads show micromolar IC50s, have significant selectivity for SIRT6 versus SIRT1 and SIRT2, and are active in cells, as shown by increased acetylation at SIRT6 target lysines on histone 3, reduced TNF-α secretion, GLUT-1 upregulation, and increased glucose uptake. Taken together, these results show the value of these compounds as starting leads for the development of new SIRT6-targeting therapeutic agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm500487d | DOI Listing |
Int Immunopharmacol
December 2024
Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
The Sirtuins family (SIRT) has been implicated in numerous diseases, including psoriasis.However, the precise role of SIRT6 in psoriasis remains unclear. The analysis of publicly available RNA-seq data from GEO profiles showed that SIRT6 expression levels was significantly elevated in the lesional skins from patients with psoriasis, as compared to the non-lesional skins or the skins from normal healthy donors.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
High glucose (HG) induced endothelial senescence is related to endothelial dysfunction and cardiovascular complications in diabetic patients. Humanin, a member of mitochondrial derived peptides (MDPs), is thought to contribute to aging-related cardiovascular protection. The goal of the study is to explore the pathogenesis of HG-induced endothelial senescence and potential anti-senescent effects of Humanin.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, #467 Zhongshan Road, Dalian, 116023, Liaoning, China.
Sodium-glucose co-transport protein 2 (SGLT2) inhibitors, a novel category of oral hypoglycemic agents, offer a promising outlook for individuals experiencing heart failure with reduced ejection fraction. Evidence is emerging that highlights their potential in alleviating myocardial fibrosis and oxidative stress. However, the precise mechanisms through which SGLT2 inhibitors influence myocardial fibrosis induced by angiotensin II (Ang II) or transforming growth factor-β1 (TGF-β1) are not fully understood.
View Article and Find Full Text PDFCell Biosci
December 2024
The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Background: Aberrant interplay between epigenetic reprogramming and metabolic rewiring events contributes to bladder cancer progression and metastasis. How the deacetylase Sirtuin-6 (SIRT6) regulates glycolysis and lactate secretion in bladder cancer remains poorly defined. We thus aimed to study the biological functions of SIRT6 in bladder cancer.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
December 2024
Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China. (S.L., H.L., P.Z., Z.D., B.S., S.X., Y.N., X.T., L.Z., H.W., N.L., F.Z., W.Y.).
Background: The occurrence of thoracic aortic dissection (TAD) is closely related to the transformation of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic phenotype. The role of SGK1 (serum- and glucocorticoid-regulated kinase 1) in VSMC phenotypic transformation and TAD occurrence is unclear.
Methods: Four-week-old male Sgk1 ( floxed) and Sgk1;Tagln (smooth muscle cell-specific knockout) mice were administered β-aminopropionitrile monofumarate for 4 weeks to model TAD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!