When foods that contain catechins and quercetin glycosides are ingested, quercetin glycosides are hydrolyzed to quercetin during mastication by hydrolytic enzymes derived from oral bacteria and the generated quercetin aglycone is mixed with catechins in saliva. The present study deals with the interactions between (+)-catechin and quercetin during their reactions with nitrous acid under the conditions simulating the gastric lumen. Nitrous acid reacted with (+)-catechin producing 6,8-dinitrosocatechin, and quercetin partially suppressed the dinitrosocatechin formation. Nitric oxide, which was produced by not only (+)-catechin/nitrous acid but also quercetin/nitrous acid systems, was used to produce 6,8-dinitrosocatechin. Furthermore, 6,8-dinitrosocatechin was oxidized by nitrous acid to the quinone form. The quinone formation was significantly suppressed by quercetin. Quercetin-dependent suppression of the above reactions accompanied the oxidation of quercetin, which was observed with the formation of 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone. Taking the above results into account, we proposed a possible mechanism of 6,8-dinitrosocatechin formation and discuss the importance of quercetin to prevent the quinone formation from 6,8-dinitrosocatechin in the gastric lumen, taking the interactions between quercetin and catechins into account.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf500860sDOI Listing

Publication Analysis

Top Keywords

nitrous acid
12
quercetin
11
interactions +-catechin
8
+-catechin quercetin
8
conditions simulating
8
quercetin glycosides
8
gastric lumen
8
quinone formation
8
acid
5
68-dinitrosocatechin
5

Similar Publications

Modeling predicts facile release of nitrite but not nitric oxide from the thionitrate CHSNO with relevance to nitroglycerin bioactivation.

Sci Rep

December 2024

Department of Chemistry and Biochemistry, Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke Street West, Montréal, QC, H4B 1R6, Canada.

Nitroglycerin is a potent vasodilator in clinical use since the late 1800s. It functions as a prodrug that is bioactivated by formation of an enzyme-based thionitrate, E-Cys-NO. This intermediate reportedly decomposes to release NO and NO but their relative yields remain controversial.

View Article and Find Full Text PDF

There are three components to every environmental protection system: monitoring, estimation, and control. One of the main toxic gases with considerable effects on human health is NO, which is released into the atmosphere by industrial activities and the transportation network. In the present research, a NO sensor is designed based on FeO piperidine-4-sulfonic acid grafted onto a reduced graphene oxide FeO@rGO-N-(piperidine-4-SOH) nanocomposite, due to the highly efficient detection of pollution in the air.

View Article and Find Full Text PDF

BODIPY-Based Ratiometric Fluorescent Probe for Sensing Peroxynitrite in Inflammatory Cells and Tissues.

Biosensors (Basel)

December 2024

State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.

Peroxynitrite (ONOO) plays an important role in many physiological and pathological processes. Excessive ONOO in cells leads to oxidative stress and inflammation. However, precise monitoring of ONOO levels in specific organelles (e.

View Article and Find Full Text PDF

Nitrous oxide (NO) is generally used in the medical and food industries. However, it is sometimes illegally misused by young adults as a recreational drug. In either of these uses, functional vitamin B12 deficiency results in neurological implications, such as peripheral neuropathy and subacute combined degeneration (SACD).

View Article and Find Full Text PDF

Radiotherapy, employing high-energy rays to precisely target and eradicate tumor cells, plays a pivotal role in the treatment of various malignancies. Despite its therapeutic potential, the effectiveness of radiotherapy is hindered by the tumor's inherent low radiosensitivity and the immunosuppressive microenvironment. Here we present an innovative approach that integrates peroxynitrite (ONOO)-mediated radiosensitization with the tumor-associated neutrophils (TANs) polarization for the reversal of immunosuppressive tumor microenvironment (TME), greatly amplifying the potency of radiotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!