Soil microbial communities of the McMurdo Dry Valleys, Antarctica (MDV) contain representatives from at least fourteen bacterial phyla. However, given low rates of microbial activity, it is unclear whether this richness represents functioning rather than dormant members of the community. We used stable isotope probing (SIP) with (18) O-water to determine if microbial populations grow in MDV soils. Changes in the microbial community were characterized in soils amended with H2 (18) O and H2 (18) O-organic matter. Sequencing the 16S rRNA genes of the heavy and light fractions of the bacterial community DNA shows that DNA of microbial populations was labeled with (18) O-water, indicating these micro-organisms grew in the MDV soils. Significant differences existed in the community composition of the heavy and light fractions of the H2 (18) O and H2 (18) O-organic matter amended samples (Anosim P < 0.05 of weighted Unifrac distance). Control samples and the light DNA fraction of the H2 (18) O amended samples were dominated by representatives of the phyla Deinococcus-Thermus, Proteobacteria, Planctomyces, Gemmatimonadetes, Actinobacteria and Acidobacteria, whereas Proteobacteria were more prevalent in the heavy DNA fractions from the H2 (18) O-water and the H2 (18) O-water-organic matter treatments. Our results indicate that SIP with H2 (18) O can be used to distinguish active bacterial populations even in this low organic matter environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4129634PMC
http://dx.doi.org/10.1111/1574-6941.12349DOI Listing

Publication Analysis

Top Keywords

bacterial populations
8
mcmurdo dry
8
stable isotope
8
isotope probing
8
microbial populations
8
mdv soils
8
o-organic matter
8
heavy light
8
light fractions
8
amended samples
8

Similar Publications

The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.

View Article and Find Full Text PDF

Differential Responses of Methylobacterium and Sphingomonas Species to Multispecies Interactions in the Phyllosphere.

Environ Microbiol

January 2025

Institute of Microbiology and Dahlem Centre of Plant Sciences, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.

The leaf surface, known as the phylloplane, presents an oligotrophic and heterogeneous environment due to its topography and uneven distribution of resources. Although it is a challenging environment, leaves support abundant bacterial communities that are spatially structured. However, the factors influencing these spatial distribution patterns are not well understood.

View Article and Find Full Text PDF

Genes encoding OXA-48-like carbapenem-hydrolyzing enzymes are often located on plasmids and are abundant among carbapenemase-producing (CPE) worldwide. After a large plasmid-mediated outbreak in 2011, routine screening of patients at risk of CPE carriage on admission and every 7 days during hospitalization was implemented in a large hospital in the Netherlands. The objective of this study was to investigate the dynamics of the hospitals' 2011 outbreak-associated plasmid among CPE collected from 2011 to 2021.

View Article and Find Full Text PDF

Slower swimming promotes chemotactic encounters between bacteria and small phytoplankton.

Proc Natl Acad Sci U S A

January 2025

Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich 8093, Switzerland.

Chemotaxis enables marine bacteria to increase encounters with phytoplankton cells by reducing their search times, provided that bacteria detect noisy chemical gradients around phytoplankton. Gradient detection depends on bacterial phenotypes and phytoplankton size: large phytoplankton produce spatially extended but shallow gradients, whereas small phytoplankton produce steeper but spatially more confined gradients. To date, it has remained unclear how phytoplankton size and bacterial swimming speed affect bacteria's gradient detection ability and search times for phytoplankton.

View Article and Find Full Text PDF

Distinct Virulence Mechanisms of in Onion Foliar and Bulb Scale Tissues.

Mol Plant Microbe Interact

January 2025

Univ of Georgia, Plant Pathology, 3303 Miller Plant Sciences, Athens, United States, 30602;

Slippery skin of onion caused by pv. (Bga) is a common bacterial disease reported from onion growing regions around the world. Despite the increasing attention in recent years, our understanding of the virulence mechanisms of this pathogen remains limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!