Immunohistochemical analysis of tau phosphorylation and astroglial activation with enhanced leptin receptor expression in diet-induced obesity mouse hippocampus.

Neurosci Lett

Laboratory for Neurodegenerative Disorder Research, Clinical Research Center, Chiba East National Hospital, Japan; Department of Neurology, Chiba-East National Hospital, Japan; Department of Neurology, Chiba University Graduate School of Medicine, Japan. Electronic address:

Published: June 2014

Accumulating evidence indicates that obesity is an independent risk factor for developing Alzheimer disease (AD). Recent studies have shown that diet-induced obesity (DIO) enhances AD-related pathologies in transgenic mouse models of the disease. DIO increases amyloid β (Aβ) deposition in amyloidogenic transgenic mice and enhances tau phosphorylation in tau transgenic mice. However, it remains unclear whether DIO also enhances AD-related pathological processes in wild-type (WT) mice. In this study, we examined the effects of DIO on Aβ and tau pathology in WT mice using immunohistochemistry. In addition, we evaluated the protective effect of voluntary exercise on the DIO-induced pathological changes. DIO caused tau phosphorylation and astroglial activation in the hippocampus in WT mice. Interestingly, these changes were associated with enhanced astrocytic leptin receptor (LepR) expression and mild microgliosis, but not Aβ accumulation. Although phosphorylated tau staining was only observed in the hippocampus, astrogliosis and microgliosis were present in both the amygdala and hippocampus. However, no apparent neuronal loss was observed. Voluntary exercise prevented these DIO-induced pathological changes. Our results demonstrate for the first time that DIO causes tau phosphorylation and that astrocytic LepR might be involved in the pathological process in WT mouse hippocampus. Our findings also suggest that physical exercise is a promising strategy for the prevention of AD in patients with obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2014.04.028DOI Listing

Publication Analysis

Top Keywords

tau phosphorylation
16
phosphorylation astroglial
8
astroglial activation
8
leptin receptor
8
diet-induced obesity
8
mouse hippocampus
8
dio enhances
8
enhances ad-related
8
transgenic mice
8
voluntary exercise
8

Similar Publications

Alzheimer's disease (AD) is the most common type of dementia. Its incidence is rising rapidly as the global population ages, leading to a significant social and economic burden. AD involves complex pathologies, including amyloid plaque accumulation, synaptic dysfunction, and neuroinflammation.

View Article and Find Full Text PDF

Background: α-Synuclein (α-Syn) pathology is present in 30-50 % of Alzheimer's disease (AD) patients, and its interactions with tau proteins may further exacerbate pathological changes in AD. However, the specific role of different aggregation forms of α-Syn in the progression of AD remains unclear.

Objectives: To explore the relationship between various aggregation types of CSF α-Syn and Alzheimer's disease progression.

View Article and Find Full Text PDF

VG@nAu-based fluorescent biosensor for grading Alzheimer's disease by detecting P-tau181 protein in clinical samples.

Anal Chim Acta

February 2025

Institute for Advanced Study (IAS), College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China. Electronic address:

Background: Alzheimer's disease (AD) is a neurodegenerative disorder with a very long duration, posing a serious threat to people's life and health. To date, no medicine that can cure or reverse the disease has been developed or reported, so early diagnosis and timely intervention are essential. The concentration of Phosphorylated tau181 (P-tau181) in blood has been approved by FDA as a standard for assisting clinical diagnosis of AD.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative condition characterized by a gradual decline in cognitive function, for which few effective treatments exist. This study investigated the neuroprotective potential of root extract and its key constituents (baicalein, chrysin, oroxylin A) against AD hallmarks. The extract and its constituents exhibited antioxidant activity in the DPPH assay.

View Article and Find Full Text PDF

Alzheimer's disease (AD) remains a leading cause of cognitive decline and mortality worldwide, characterized by neurodegeneration, synaptic deficiencies, and neuroinflammation. Despite advancements in early detection, diagnosis, and treatment, AD presents substantial challenges due to its complex pathology, heterogeneity, and the limited efficacy of current therapies. Consequently, there is a pressing need for novel therapeutic agents to target the multifaceted aspects of AD pathology, enhance current treatments, and minimize adverse effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!