The SnO2@C@GS composites as a new type of 3D nanoarchitecture have been successfully synthesized by a facile hydrothermal process followed by a sintering strategy. Such a 3D nanoarchitecture is made up of SnO2@C core-shell nanospheres and nanochains anchored on wrinkled graphene sheets (GSs). Transmission electron microscopy shows that these core-shell nanoparticles consist of 3-9 nm diameter secondary SnO2 nanoparticles embedded in about 50 nm diameter primary carbon nanospheres. Large quantities of core-shell nanoparticles are uniformly attached to the surface of wrinkled graphene nanosheets, with a portion of them further connected into nanochains. This new 3D nanoarchitecture consists of two different kinds of carbon-buffering matrixes, i.e., the carbon layer produced by glucose carbonization and the added GS template, leading to enhanced lithium storage properties. The lithium-cycling properties of the SnO2@C@GS composite have been evaluated by galvanostatic discharge-charge cycling and electrochemical impedance spectroscopy. Results show that the SnO2@C@GS composite has discharge capacities of 883.5, 845.7, and 830.5 mA h g(-1) in the 20th, 50th and 100th cycles, respectively, at a current density of 200 mA g(-1) and delivers a desirable discharge capacity of 645.2 mA h g(-1) at a rate of 1680 mA g(-1). This new 3D nanoarchitecture exhibits a high capability and excellent cycling and rate performance, holding great potential as a high-rate and stable anode material for lithium storage.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am5007194DOI Listing

Publication Analysis

Top Keywords

wrinkled graphene
12
lithium storage
12
anchored wrinkled
8
core-shell nanoparticles
8
sno2@c@gs composite
8
tin dioxide@carbon
4
core-shell
4
dioxide@carbon core-shell
4
core-shell nanoarchitectures
4
nanoarchitectures anchored
4

Similar Publications

In Situ TEM Study of Electrical Property and Mechanical Deformation in MoS/Graphene Heterostructures.

Nanomaterials (Basel)

January 2025

Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.

We present a versatile method for synthesizing high-quality molybdenum disulfide (MoS) crystals on graphite foil edges via chemical vapor deposition (CVD). This results in MoS/graphene heterostructures with precise epitaxial layers and no rotational misalignment, eliminating the need for transfer processes and reducing contamination. Utilizing in situ transmission electron microscopy (TEM) equipped with a nano-manipulator and tungsten probe, we mechanically induce the folding, wrinkling, and tearing of freestanding MoS crystals, enabling the real-time observation of structural changes at high temporal and spatial resolutions.

View Article and Find Full Text PDF

Phase transitions and morphology control of Langmuir Blodget (LB) films of graphene oxide.

J Colloid Interface Sci

April 2025

Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea. Electronic address:

Hypothesis: Understanding the Langmuir film formation process of flexible and soft materials like graphene oxide (GO) is essential, as it shows different trends compared to the conventional surface pressure-area (π-A) and compressional modulus (ε) isotherms of hard materials. Additionally, the size distribution and mechanical properties of the GO are assumed to affect the distinctive Langmuir-Blodgett (LB) film morphologies, such as overlaps and wrinkles.

Experiment: To gain a deeper insights of phase transitions in GO LB films, we propose a novel analysis of elastic tensile modulus versus surface pressure (|ε|-π) isotherms.

View Article and Find Full Text PDF

Multiscale Structural Control by Matrix Engineering for Polydimethylsiloxane Filled Graphene Woven Fabric Strain Sensors.

Small

January 2025

Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

Elastomer cure shrinkage during composite fabrication often induces wrinkling in conductive networks, significantly affecting the performance of flexible strain sensors, yet the specific roles of such wrinkles are not fully understood. Herein, a highly sensitive polydimethylsiloxane-filled graphene woven fabric (PDMS-f-GWF) strain sensor by optimizing the PDMS cure shrinkage through careful adjustment of the base-to-curing-agent ratio is developed. This sensor achieves a gauge factor of ∼700 at 25% strain, which is over 6 times higher than sensors using commercially formulated PDMS.

View Article and Find Full Text PDF

This study presents the development and characterization of manganese ferrite (MnFeO)-based nanocomposites with graphite oxide (GO) and chitosan (CS) for efficient dye removal from textile wastewater and aqueous solution. Comprehensive characterization was performed using FT-IR, Raman, XRD, BET, SEM, DRS and Zeta potential techniques. XRD analysis confirmed the cubic spinel structure of MnFeO, with characteristic peaks at 2θ = 32, 35, 48, 53, 62, and 64°.

View Article and Find Full Text PDF
Article Synopsis
  • Hybrid epoxy composites are considered ideal for low-density applications due to their high specific strength and stiffness, enhanced further by adding nanofillers like carbon nanotubes and graphene.
  • Graphene quantum dots (GQDs) are particularly effective due to their small size, which improves the interfacial interactions and overall mechanical properties of the composite, overcoming issues commonly associated with traditional fillers.
  • This study employs a molecular dynamics workflow to simulate the effects of functionalized GQDs in an epoxy matrix, revealing significant gains in strength (up to 56%) and stiffness (18%) from oxidized GQD-epoxy composites.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!