Genotoxicity of perfluorinated chemicals (PFCs) to the green mussel (Perna viridis).

Sci Total Environ

Department of Civil & Environmental Engineering, National University of Singapore, 2 Engineering Drive, Singapore 117576.

Published: July 2014

Concerns regarding perfluorinated chemicals (PFCs) have grown significantly in recent years. However, regulations and guidelines regarding the emission and treatment of PFCs are still missing in most parts of the world, mostly due to the lack of PFC toxicity data. In the current study, the genotoxic effects of four common PFCs, named perfluorooctanesulfonate (PFOS), perfluoroocanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) were investigated on marine mussels. The effects of exposure time and concentration on the toxic behavior of the compounds were also examined. Genotoxicity of PFCs was assessed in biomarker assays, showing that exposure to the target compounds could damage the organism's genetic material to varying extents, including DNA strand breaks and fragmentation, chromosomal breaks and apoptosis. The adverse effects increased with both exposure concentration and time and were related with the organism burden of PFCs. The integrated biomarker response analysis demonstrated that PFOS exhibited a higher genotoxicity than the other tested compounds. The EC50 values and confidence intervals based on integrative genotoxicity were 33 (29-37), 594 (341-1036), 195 (144-265) and 78 (73-84) μg/L for PFOS, PFOA, PFNA and PFDA respectively, classifying PFOS as a highly genotoxic compound. Although primary DNA damage was shown to be recoverable after exposure ceased, permanent genetic damage caused by elevated PFC concentrations was not restored. This is the first ecotoxicity study of PFCs that focuses on the genotoxic effects of the compounds, clearly indicating the genotoxicity of the tested PFCs and demonstrating that functional groups have a major impact on the compounds' genotoxic behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2014.04.017DOI Listing

Publication Analysis

Top Keywords

perfluorinated chemicals
8
pfcs
8
chemicals pfcs
8
genotoxic effects
8
genotoxicity tested
8
genotoxicity
5
genotoxicity perfluorinated
4
pfcs green
4
green mussel
4
mussel perna
4

Similar Publications

Groundwater-dependent ecosystems in areas with industrial land use are at risk of exposure to a PFAS chemicals. We investigated one such system with several known PFAS source areas, where high and low permeability sediments (glacial) coupled with groundwater-lake and groundwater/surface-water interactions created complex 'source to seep' dynamics. Using heat-tracing and chemical methods, numerous preferential groundwater discharge zones were identified and sampled across the upper Quashnet River stream-wetland system in Mashpee, MA, USA, downgradient of Joint Base Cape Cod (JBCC).

View Article and Find Full Text PDF

Aqueous film-forming foam (AFFF) is a targeted product for liquid fuel fires and has the benefits of a long storage period and high fire extinguishing efficiency. However, because of the toxicity and bioaccumulation of the core raw material's long-chain fluorocarbon surfactant, traditional AFFF is being phased out. For this reason, three efficient AFFFs (F-1, F-2, and F-3; more details in Table 2) were designed using anionic surfactants (PBAF) with branched C perfluorinated chains, hexadecyltrimethylammonium bromide (CTAB), and dodecyl dimethyl betaine (BS-12) as core materials.

View Article and Find Full Text PDF

The ground-state charge generation (GSCG) in photoactive layers determines whether the photogenerated carriers occupy the deep trap energy levels, which, in turn, affects the device performance of organic solar cells (OSCs). In this work, charge-quadrupole electrostatic interactions are modulated to achieve GSCG through a molecular strategy of introducing different numbers of F atom substitutions on the BTA3 side chain. The results show that 8F substitution (BTA3-8F) and 16F substitution (BTA3-16F) lead to different patterns of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy level changes.

View Article and Find Full Text PDF

Photoredox-Enabled Direct and Three-Component Difluoroalkylative Modification of -Aryl Glycinates.

Org Lett

January 2025

Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China.

A Cu(I) photoredox-enabled reaction that selectively incorporates a difluoroalkyl group into -aryl glycine derivatives has been established. Using a bench-stable [PhPCFH]Br salt, the -CFH group could be installed either directly on the α-carbon of the glycine backbone or in a three-component fashion using an alkene as a bridge. A series of glycine derivatives have been evaluated, providing access to diverse unnatural amino esters and dipeptides with a -CHF unit.

View Article and Find Full Text PDF

Solid-State Photoswitching of Hydrazones Based on Excited-State Intramolecular Proton Transfer.

J Am Chem Soc

January 2025

Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava SK-842 15, Slovakia.

The development of new photochromic systems is motivated by the possibility of controlling the properties and functions of materials with high spatial and temporal resolution in a reversible manner. While there are several classes of photoswitches operating in solution, the design of systems efficiently operating in the solid state remains highly challenging, mainly due to limitations related to confinement effects. Triaryl-hydrazones represent a relatively new subclass of bistable hydrazone photoswitches exhibiting efficient / photochromism in solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!